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La Forza di Coulomb e la carica elettrica
La carica elettrica è la proprietà fondamentale della materia, che mostra attrazione o repulsione 
elettrostatica in presenza di altra materia, anch’essa  dotata di carica.

  La carica elettrica può assumere un valore qualunque, 
  oppure è un multiplo di un valore fondamentale?
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The magnitude of the
electrostatic force F between two
point charges q1 and q2 is directly
proportional to the product of the
magnitudes of charges and
inversely proportional to the
square of the distance between
them. Like charges repel each
other, and opposite charges
attract each other.
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Charles-Augustin de Coulomb

Coulomb's torsion balance

In the image, the vector F1 is the force experienced
by q1, and the vector F2 is the force experienced by
q2. When q1q2 > 0 the forces are repulsive (as in the
image) and when q1q2 < 0 the forces are attractive
(opposite to the image). The magnitude of the forces
will always be equal.

If two charges have the same
sign, the electrostatic force
between them is repulsive; if they
have different sign, the force
between them is attractive.

The most basic Feynman
diagram for QED interaction
between two fermions

Experiment to verify Coulomb's law.

Electronics portal

From Wikipedia, the free encyclopedia

Coulomb's inverse-square law, or simply Coulomb's
law, is an experimental law[1] of physics that calculates the
amount of force between two electrically charged particles
at rest. This electric force is conventionally called the
electrostatic force or Coulomb force.[2] Although the law
was known earlier, it was first published in 1785 by French
physicist Charles-Augustin de Coulomb. Coulomb's law
was essential to the development of the theory of
electromagnetism and maybe even its starting point,[1] as it
allowed meaningful discussions of the amount of electric
charge in a particle.[3]

The law states that the magnitude, or absolute value, of
the attractive or repulsive electrostatic force between two
point charges is directly proportional to the product of the
magnitudes of their charges and inversely proportional to
the square of the distance between them.[4]

Coulomb discovered that bodies with like
electrical charges repel:

It follows therefore from these three
tests, that the repulsive force that the
two balls – [that were] electrified with
the same kind of electricity – exert on
each other, follows the inverse
proportion of the square of the distance.
[5]

Coulomb also showed that oppositely charged
bodies attract according to an inverse-square
law:

Here, ke is a constant, q1 and q2 are the
quantities of each charge, and the scalar r is the
distance between the charges.

The force is along the straight line joining the two
charges. If the charges have the same sign, the
electrostatic force between them makes them
repel; if they have different signs, the force between them makes them attract.

Being an inverse-square law, the law is similar to Isaac Newton's inverse-square law of
universal gravitation, but gravitational forces always make things attract, while electrostatic
forces make charges attract or repel. Also, gravitational forces are much weaker than
electrostatic forces.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the
case of a single point charge at rest, the two laws are equivalent, expressing the same
physical law in different ways.[6] The law has been tested extensively, and observations have
upheld the law on the scale from 10−16 m to 108 m.[6]

History [ edit ]

Ancient cultures around the Mediterranean knew that
certain objects, such as rods of amber, could be rubbed
with cat's fur to attract light objects like feathers and pieces
of paper. Thales of Miletus made the first recorded
description of static electricity around 600 BC,[7] when he
noticed that friction could make a piece of amber attract
small objects.[8][9]

In 1600, English scientist William Gilbert made a careful
study of electricity and magnetism, distinguishing the
lodestone effect from static electricity produced by rubbing
amber.[8] He coined the Neo-Latin word electricus ("of
amber" or "like amber", from ἤλεκτρον [elektron], the
Greek word for "amber") to refer to the property of

attracting small objects after being rubbed.[10] This association gave rise to the English words
"electric" and "electricity", which made their first appearance in print in Thomas Browne's
Pseudodoxia Epidemica of 1646.[11]

Early investigators of the 18th century who suspected that the electrical force diminished with
distance as the force of gravity did (i.e., as the inverse square of the distance) included Daniel
Bernoulli[12] and Alessandro Volta, both of whom measured the force between plates of a
capacitor, and Franz Aepinus who supposed the inverse-square law in 1758.[13]

Based on experiments with electrically charged spheres, Joseph Priestley of England was
among the first to propose that electrical force followed an inverse-square law, similar to
Newton's law of universal gravitation. However, he did not generalize or elaborate on this.[14] In
1767, he conjectured that the force between charges varied as the inverse square of the
distance.[15][16]

In 1769, Scottish physicist John Robison announced that,
according to his measurements, the force of repulsion
between two spheres with charges of the same sign varied
as x−2.06.[17]

In the early 1770s, the dependence of the force between
charged bodies upon both distance and charge had
already been discovered, but not published, by Henry
Cavendish of England.[18] In his notes, Cavendish wrote,
"We may therefore conclude that the electric attraction and
repulsion must be inversely as some power of the distance
between that of the 2 + 1

50th and that of the 2 − 1
50th, and

there is no reason to think that it differs at all from the
inverse duplicate ratio".

Finally, in 1785, the French physicist Charles-Augustin de Coulomb published his first three
reports of electricity and magnetism where he stated his law. This publication was essential to
the development of the theory of electromagnetism.[4] He used a torsion balance to study the
repulsion and attraction forces of charged particles, and determined that the magnitude of the
electric force between two point charges is directly proportional to the product of the charges
and inversely proportional to the square of the distance between them.

The torsion balance consists of a bar suspended from its middle by a thin fiber. The fiber acts
as a very weak torsion spring. In Coulomb's experiment, the torsion balance was an insulating
rod with a metal-coated ball attached to one end, suspended by a silk thread. The ball was
charged with a known charge of static electricity, and a second charged ball of the same
polarity was brought near it. The two charged balls repelled one another, twisting the fiber
through a certain angle, which could be read from a scale on the instrument. By knowing how
much force it took to twist the fiber through a given angle, Coulomb was able to calculate the
force between the balls and derive his inverse-square proportionality law.

Mathematical form [ edit ]

Coulomb's law states that the
electrostatic force  experienced by a
charge,  at position , in the vicinity
of another charge,  at position , in a
vacuum is equal to[19]

where  is the
displacement vector between the charges,  a unit vector pointing from  to , and  the
electric constant. Here,  is used for the vector notation. The electrostatic force 
experienced by , according to Newton's third law, is .

If both charges have the same sign (like charges) then the product  is positive and the
direction of the force on  is given by ; the charges repel each other. If the charges have
opposite signs then the product  is negative and the direction of the force on  is ;
the charges attract each other.[20]

System of discrete charges [ edit ]

The law of superposition allows Coulomb's law to be extended to include any number of point
charges. The force acting on a point charge due to a system of point charges is simply the
vector addition of the individual forces acting alone on that point charge due to each one of the
charges. The resulting force vector is parallel to the electric field vector at that point, with that
point charge removed.

Force  on a small charge  at position , due to a system of  discrete charges in vacuum
is[19]

where  is the magnitude of the ith charge,  is the vector from its position to  and  is the
unit vector in the direction of .

Continuous charge distribution [ edit ]

In this case, the principle of linear superposition is also used. For a continuous charge
distribution, an integral over the region containing the charge is equivalent to an infinite
summation, treating each infinitesimal element of space as a point charge . The distribution
of charge is usually linear, surface or volumetric.

For a linear charge distribution (a good approximation for charge in a wire) where  gives
the charge per unit length at position , and  is an infinitesimal element of length,[21]

For a surface charge distribution (a good approximation for charge on a plate in a parallel plate
capacitor) where  gives the charge per unit area at position , and  is an
infinitesimal element of area,

For a volume charge distribution (such as charge within a bulk metal) where  gives the
charge per unit volume at position , and  is an infinitesimal element of volume,[20]

The force on a small test charge  at position  in vacuum is given by the integral over the
distribution of charge

The "continuous charge" version of Coulomb's law is never supposed to be applied to locations
for which  because that location would directly overlap with the location of a
charged particle (e.g. electron or proton) which is not a valid location to analyze the electric
field or potential classically. Charge is always discrete in reality, and the "continuous charge"
assumption is just an approximation that is not supposed to allow  to be
analyzed.

Coulomb constant [ edit ]

The constant of proportionality, , in Coulomb's law:

is a consequence of historical choices for units.[19]: 4–2 

The constant  is the vacuum electric permittivity.[22] Using the CODATA 2022 recommended
value for ,[23] the Coulomb constant[24] is

Limitations [ edit ]

There are three conditions to be fulfilled for the validity of Coulomb's inverse square law:[25]

1. The charges must have a spherically symmetric distribution (e.g. be point charges, or a
charged metal sphere).

2. The charges must not overlap (e.g. they must be distinct point charges).
3. The charges must be stationary with respect to a nonaccelerating frame of reference.

The last of these is known as the electrostatic approximation. When movement takes place, an
extra factor is introduced, which alters the force produced on the two objects. This extra part of
the force is called the magnetic force. For slow movement, the magnetic force is minimal and
Coulomb's law can still be considered approximately correct. A more accurate approximation in
this case is, however, the Weber force. When the charges are moving more quickly in relation
to each other or accelerations occur, Maxwell's equations and Einstein's theory of relativity
must be taken into consideration.

Electric field [ edit ]

Main article: Electric field

An electric field is a vector field that associates to each
point in space the Coulomb force experienced by a unit
test charge.[19] The strength and direction of the Coulomb
force  on a charge  depends on the electric field 
established by other charges that it finds itself in, such that

. In the simplest case, the field is considered to
be generated solely by a single source point charge. More
generally, the field can be generated by a distribution of
charges who contribute to the overall by the principle of
superposition.

If the field is generated by a positive source point charge ,
the direction of the electric field points along lines directed
radially outwards from it, i.e. in the direction that a positive
point test charge  would move if placed in the field. For a
negative point source charge, the direction is radially inwards.

The magnitude of the electric field E can be derived from Coulomb's law. By choosing one of
the point charges to be the source, and the other to be the test charge, it follows from
Coulomb's law that the magnitude of the electric field E created by a single source point
charge Q at a certain distance from it r in vacuum is given by

A system of n discrete charges  stationed at  produces an electric field whose
magnitude and direction is, by superposition

Atomic forces [ edit ]

See also: Coulomb explosion

Coulomb's law holds even within atoms, correctly describing the force between the positively
charged atomic nucleus and each of the negatively charged electrons. This simple law also
correctly accounts for the forces that bind atoms together to form molecules and for the forces
that bind atoms and molecules together to form solids and liquids. Generally, as the distance
between ions increases, the force of attraction, and binding energy, approach zero and ionic
bonding is less favorable. As the magnitude of opposing charges increases, energy increases
and ionic bonding is more favorable.

Relation to Gauss's law [ edit ]

This article duplicates the scope of other articles,
specifically Gauss's_law#Relation_to_Coulomb's_law. Please
discuss this issue and help introduce a summary style to the
article.

Deriving Gauss's law from Coulomb's law [ edit ]

This section is an excerpt from Gauss's law § Deriving Gauss's law from Coulomb's law.
[ edit ]

[citation needed] Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone,
since Coulomb's law gives the electric field due to an individual, electrostatic point charge only.
However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the
electric field obeys the superposition principle. The superposition principle states that the
resulting field is the vector sum of fields generated by each particle (or the integral, if the
charges are distributed smoothly in space).

Outline of proof

Coulomb's law states that the electric field due to a stationary point charge is:

where

er is the radial unit vector,
r is the radius, | r |,
ε0 is the electric constant,
q is the charge of the particle, which is assumed to be located at the origin.

Using the expression from Coulomb's law, we get the total field at r by using an
integral to sum the field at r due to the infinitesimal charge at each other point s
in space, to give

where ρ is the charge density. If we take the divergence of both sides of this
equation with respect to r, and use the known theorem[26]

where δ(r) is the Dirac delta function, the result is

Using the "sifting property" of the Dirac delta function, we arrive at

which is the differential form of Gauss's law, as desired.

Since Coulomb's law only applies to stationary charges, there is no reason to expect Gauss's
law to hold for moving charges based on this derivation alone. In fact, Gauss's law does hold
for moving charges, and, in this respect, Gauss's law is more general than Coulomb's law.

Proof (without Dirac Delta)

Let  be a bounded open set, and

be the electric field, with  a continuous function (density of charge).

It is true for all  that .

Consider now a compact set  having a piecewise smooth boundary 
such that . It follows that  and so, for the
divergence theorem:

But because ,

for the argument above (  and
then )

Therefore the flux through a closed surface generated by some charge density
outside (the surface) is null.

Now consider , and  as the sphere centered in  having
 as radius (it exists because  is an open set).

Let  and  be the electric field created inside and outside the sphere
respectively. Then,

, 

and 

The last equality follows by observing that , and
the argument above.

The RHS is the electric flux generated by a charged sphere, and so:

with 

Where the last equality follows by the mean value theorem for integrals. Using
the squeeze theorem and the continuity of , one arrives at:

Deriving Coulomb's law from Gauss's law [ edit ]

Strictly speaking, Coulomb's law cannot be derived from Gauss's law alone, since Gauss's law
does not give any information regarding the curl of E (see Helmholtz decomposition and
Faraday's law). However, Coulomb's law can be proven from Gauss's law if it is assumed, in
addition, that the electric field from a point charge is spherically symmetric (this assumption,
like Coulomb's law itself, is exactly true if the charge is stationary, and approximately true if the
charge is in motion).

Outline of proof

Taking S in the integral form of Gauss's law to be a spherical surface of radius r,
centered at the point charge Q, we have

By the assumption of spherical symmetry, the integrand is a constant which can
be taken out of the integral. The result is

where r̂ is a unit vector pointing radially away from the charge. Again by
spherical symmetry, E points in the radial direction, and so we get

which is essentially equivalent to Coulomb's law. Thus the inverse-square law
dependence of the electric field in Coulomb's law follows from Gauss's law.

In relativity [ edit ]

Coulomb's law can be used to gain insight into the form of the magnetic field generated by
moving charges since by special relativity, in certain cases the magnetic field can be shown to
be a transformation of forces caused by the electric field. When no acceleration is involved in a
particle's history, Coulomb's law can be assumed on any test particle in its own inertial frame,
supported by symmetry arguments in solving Maxwell's equation, shown above. Coulomb's
law can be expanded to moving test particles to be of the same form. This assumption is
supported by Lorentz force law which, unlike Coulomb's law is not limited to stationary test
charges. Considering the charge to be invariant of observer, the electric and magnetic fields of
a uniformly moving point charge can hence be derived by the Lorentz transformation of the
four force on the test charge in the charge's frame of reference given by Coulomb's law and
attributing magnetic and electric fields by their definitions given by the form of Lorentz force.[27]

The fields hence found for uniformly moving point charges are given by:[28]

where  is the charge of the point source,  is the position vector from the point source to the
point in space,  is the velocity vector of the charged particle,  is the ratio of speed of the
charged particle divided by the speed of light and  is the angle between  and .

This form of solutions need not obey Newton's third law as is the case in the framework of
special relativity (yet without violating relativistic-energy momentum conservation).[29] Note that
the expression for electric field reduces to Coulomb's law for non-relativistic speeds of the
point charge and that the magnetic field in non-relativistic limit (approximating ) can be
applied to electric currents to get the Biot–Savart law. These solutions, when expressed in
retarded time also correspond to the general solution of Maxwell's equations given by solutions
of Liénard–Wiechert potential, due to the validity of Coulomb's law within its specific range of
application. Also note that the spherical symmetry for gauss law on stationary charges is not
valid for moving charges owing to the breaking of symmetry by the specification of direction of
velocity in the problem. Agreement with Maxwell's equations can also be manually verified for
the above two equations.[30]

Coulomb potential [ edit ]

See also: Electric potential

Quantum field theory [ edit ]

This article may be too technical for most readers to
understand. Please help improve it to make it understandable
to non-experts, without removing the technical details.
(October 2020) (Learn how and when to remove this message)

The Coulomb potential admits continuum states (with E >
0), describing electron-proton scattering, as well as
discrete bound states, representing the hydrogen atom.[31]

It can also be derived within the non-relativistic limit
between two charged particles, as follows:

Under Born approximation, in non-relativistic quantum
mechanics, the scattering amplitude  is:

This is to be compared to the:

where we look at the (connected) S-matrix entry for two electrons scattering off each other,
treating one with "fixed" momentum as the source of the potential, and the other scattering off
that potential.

Using the Feynman rules to compute the S-matrix element, we obtain in the non-relativistic
limit with 

Comparing with the QM scattering, we have to discard the  as they arise due to differing
normalizations of momentum eigenstate in QFT compared to QM and obtain:

where Fourier transforming both sides, solving the integral and taking  at the end will
yield

as the Coulomb potential.[32]

However, the equivalent results of the classical Born derivations for the Coulomb problem are
thought to be strictly accidental.[33][34]

The Coulomb potential, and its derivation, can be seen as a special case of the Yukawa
potential, which is the case where the exchanged boson – the photon – has no rest mass.[31]

Verification [ edit ]

This section may contain an excessive amount of intricate
detail that may interest only a particular audience. Please
help by spinning off or relocating any relevant information, and
removing excessive detail that may be against Wikipedia's
inclusion policy. (October 2020) (Learn how and when to remove

this message)

It is possible to verify Coulomb's law with a simple
experiment. Consider two small spheres of mass 
and same-sign charge , hanging from two ropes of
negligible mass of length . The forces acting on each
sphere are three: the weight , the rope tension 
and the electric force . In the equilibrium state:

(1)

and

(2)

Dividing (1) by (2):

(3)

Let  be the distance between the charged spheres; the repulsion force between them ,
assuming Coulomb's law is correct, is equal to

(Coulomb's law)

so:

(4)

If we now discharge one of the spheres, and we put it in contact with the charged sphere, each
one of them acquires a charge . In the equilibrium state, the distance between the charges
will be  and the repulsion force between them will be:

(5)

We know that  and:

Dividing (4) by (5), we get:

(6)

Measuring the angles  and  and the distance between the charges  and  is sufficient
to verify that the equality is true taking into account the experimental error. In practice, angles
can be difficult to measure, so if the length of the ropes is sufficiently great, the angles will be
small enough to make the following approximation:

(7)

Using this approximation, the relationship (6) becomes the much simpler expression:

(8)

In this way, the verification is limited to measuring the distance between the charges and
checking that the division approximates the theoretical value.

See also [ edit ]

References [ edit ]

Biot–Savart law
Darwin Lagrangian
Electromagnetic force
Gauss's law
Method of image charges
Molecular modelling
Newton's law of universal gravitation, which uses a similar
structure, but for mass instead of charge
Static forces and virtual-particle exchange
Casimir effect
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them. Like charges repel each
other, and opposite charges
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Charles-Augustin de Coulomb

Coulomb's torsion balance

In the image, the vector F1 is the force experienced
by q1, and the vector F2 is the force experienced by
q2. When q1q2 > 0 the forces are repulsive (as in the
image) and when q1q2 < 0 the forces are attractive
(opposite to the image). The magnitude of the forces
will always be equal.

If two charges have the same
sign, the electrostatic force
between them is repulsive; if they
have different sign, the force
between them is attractive.

The most basic Feynman
diagram for QED interaction
between two fermions

Experiment to verify Coulomb's law.
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From Wikipedia, the free encyclopedia

Coulomb's inverse-square law, or simply Coulomb's
law, is an experimental law[1] of physics that calculates the
amount of force between two electrically charged particles
at rest. This electric force is conventionally called the
electrostatic force or Coulomb force.[2] Although the law
was known earlier, it was first published in 1785 by French
physicist Charles-Augustin de Coulomb. Coulomb's law
was essential to the development of the theory of
electromagnetism and maybe even its starting point,[1] as it
allowed meaningful discussions of the amount of electric
charge in a particle.[3]

The law states that the magnitude, or absolute value, of
the attractive or repulsive electrostatic force between two
point charges is directly proportional to the product of the
magnitudes of their charges and inversely proportional to
the square of the distance between them.[4]

Coulomb discovered that bodies with like
electrical charges repel:

It follows therefore from these three
tests, that the repulsive force that the
two balls – [that were] electrified with
the same kind of electricity – exert on
each other, follows the inverse
proportion of the square of the distance.
[5]

Coulomb also showed that oppositely charged
bodies attract according to an inverse-square
law:

Here, ke is a constant, q1 and q2 are the
quantities of each charge, and the scalar r is the
distance between the charges.

The force is along the straight line joining the two
charges. If the charges have the same sign, the
electrostatic force between them makes them
repel; if they have different signs, the force between them makes them attract.

Being an inverse-square law, the law is similar to Isaac Newton's inverse-square law of
universal gravitation, but gravitational forces always make things attract, while electrostatic
forces make charges attract or repel. Also, gravitational forces are much weaker than
electrostatic forces.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the
case of a single point charge at rest, the two laws are equivalent, expressing the same
physical law in different ways.[6] The law has been tested extensively, and observations have
upheld the law on the scale from 10−16 m to 108 m.[6]

History [ edit ]

Ancient cultures around the Mediterranean knew that
certain objects, such as rods of amber, could be rubbed
with cat's fur to attract light objects like feathers and pieces
of paper. Thales of Miletus made the first recorded
description of static electricity around 600 BC,[7] when he
noticed that friction could make a piece of amber attract
small objects.[8][9]

In 1600, English scientist William Gilbert made a careful
study of electricity and magnetism, distinguishing the
lodestone effect from static electricity produced by rubbing
amber.[8] He coined the Neo-Latin word electricus ("of
amber" or "like amber", from ἤλεκτρον [elektron], the
Greek word for "amber") to refer to the property of

attracting small objects after being rubbed.[10] This association gave rise to the English words
"electric" and "electricity", which made their first appearance in print in Thomas Browne's
Pseudodoxia Epidemica of 1646.[11]

Early investigators of the 18th century who suspected that the electrical force diminished with
distance as the force of gravity did (i.e., as the inverse square of the distance) included Daniel
Bernoulli[12] and Alessandro Volta, both of whom measured the force between plates of a
capacitor, and Franz Aepinus who supposed the inverse-square law in 1758.[13]

Based on experiments with electrically charged spheres, Joseph Priestley of England was
among the first to propose that electrical force followed an inverse-square law, similar to
Newton's law of universal gravitation. However, he did not generalize or elaborate on this.[14] In
1767, he conjectured that the force between charges varied as the inverse square of the
distance.[15][16]

In 1769, Scottish physicist John Robison announced that,
according to his measurements, the force of repulsion
between two spheres with charges of the same sign varied
as x−2.06.[17]

In the early 1770s, the dependence of the force between
charged bodies upon both distance and charge had
already been discovered, but not published, by Henry
Cavendish of England.[18] In his notes, Cavendish wrote,
"We may therefore conclude that the electric attraction and
repulsion must be inversely as some power of the distance
between that of the 2 + 1

50th and that of the 2 − 1
50th, and

there is no reason to think that it differs at all from the
inverse duplicate ratio".

Finally, in 1785, the French physicist Charles-Augustin de Coulomb published his first three
reports of electricity and magnetism where he stated his law. This publication was essential to
the development of the theory of electromagnetism.[4] He used a torsion balance to study the
repulsion and attraction forces of charged particles, and determined that the magnitude of the
electric force between two point charges is directly proportional to the product of the charges
and inversely proportional to the square of the distance between them.

The torsion balance consists of a bar suspended from its middle by a thin fiber. The fiber acts
as a very weak torsion spring. In Coulomb's experiment, the torsion balance was an insulating
rod with a metal-coated ball attached to one end, suspended by a silk thread. The ball was
charged with a known charge of static electricity, and a second charged ball of the same
polarity was brought near it. The two charged balls repelled one another, twisting the fiber
through a certain angle, which could be read from a scale on the instrument. By knowing how
much force it took to twist the fiber through a given angle, Coulomb was able to calculate the
force between the balls and derive his inverse-square proportionality law.

Mathematical form [ edit ]

Coulomb's law states that the
electrostatic force  experienced by a
charge,  at position , in the vicinity
of another charge,  at position , in a
vacuum is equal to[19]

where  is the
displacement vector between the charges,  a unit vector pointing from  to , and  the
electric constant. Here,  is used for the vector notation. The electrostatic force 
experienced by , according to Newton's third law, is .

If both charges have the same sign (like charges) then the product  is positive and the
direction of the force on  is given by ; the charges repel each other. If the charges have
opposite signs then the product  is negative and the direction of the force on  is ;
the charges attract each other.[20]

System of discrete charges [ edit ]

The law of superposition allows Coulomb's law to be extended to include any number of point
charges. The force acting on a point charge due to a system of point charges is simply the
vector addition of the individual forces acting alone on that point charge due to each one of the
charges. The resulting force vector is parallel to the electric field vector at that point, with that
point charge removed.

Force  on a small charge  at position , due to a system of  discrete charges in vacuum
is[19]

where  is the magnitude of the ith charge,  is the vector from its position to  and  is the
unit vector in the direction of .

Continuous charge distribution [ edit ]

In this case, the principle of linear superposition is also used. For a continuous charge
distribution, an integral over the region containing the charge is equivalent to an infinite
summation, treating each infinitesimal element of space as a point charge . The distribution
of charge is usually linear, surface or volumetric.

For a linear charge distribution (a good approximation for charge in a wire) where  gives
the charge per unit length at position , and  is an infinitesimal element of length,[21]

For a surface charge distribution (a good approximation for charge on a plate in a parallel plate
capacitor) where  gives the charge per unit area at position , and  is an
infinitesimal element of area,

For a volume charge distribution (such as charge within a bulk metal) where  gives the
charge per unit volume at position , and  is an infinitesimal element of volume,[20]

The force on a small test charge  at position  in vacuum is given by the integral over the
distribution of charge

The "continuous charge" version of Coulomb's law is never supposed to be applied to locations
for which  because that location would directly overlap with the location of a
charged particle (e.g. electron or proton) which is not a valid location to analyze the electric
field or potential classically. Charge is always discrete in reality, and the "continuous charge"
assumption is just an approximation that is not supposed to allow  to be
analyzed.

Coulomb constant [ edit ]

The constant of proportionality, , in Coulomb's law:

is a consequence of historical choices for units.[19]: 4–2 

The constant  is the vacuum electric permittivity.[22] Using the CODATA 2022 recommended
value for ,[23] the Coulomb constant[24] is

Limitations [ edit ]

There are three conditions to be fulfilled for the validity of Coulomb's inverse square law:[25]

1. The charges must have a spherically symmetric distribution (e.g. be point charges, or a
charged metal sphere).

2. The charges must not overlap (e.g. they must be distinct point charges).
3. The charges must be stationary with respect to a nonaccelerating frame of reference.

The last of these is known as the electrostatic approximation. When movement takes place, an
extra factor is introduced, which alters the force produced on the two objects. This extra part of
the force is called the magnetic force. For slow movement, the magnetic force is minimal and
Coulomb's law can still be considered approximately correct. A more accurate approximation in
this case is, however, the Weber force. When the charges are moving more quickly in relation
to each other or accelerations occur, Maxwell's equations and Einstein's theory of relativity
must be taken into consideration.

Electric field [ edit ]

Main article: Electric field

An electric field is a vector field that associates to each
point in space the Coulomb force experienced by a unit
test charge.[19] The strength and direction of the Coulomb
force  on a charge  depends on the electric field 
established by other charges that it finds itself in, such that

. In the simplest case, the field is considered to
be generated solely by a single source point charge. More
generally, the field can be generated by a distribution of
charges who contribute to the overall by the principle of
superposition.

If the field is generated by a positive source point charge ,
the direction of the electric field points along lines directed
radially outwards from it, i.e. in the direction that a positive
point test charge  would move if placed in the field. For a
negative point source charge, the direction is radially inwards.

The magnitude of the electric field E can be derived from Coulomb's law. By choosing one of
the point charges to be the source, and the other to be the test charge, it follows from
Coulomb's law that the magnitude of the electric field E created by a single source point
charge Q at a certain distance from it r in vacuum is given by

A system of n discrete charges  stationed at  produces an electric field whose
magnitude and direction is, by superposition

Atomic forces [ edit ]

See also: Coulomb explosion

Coulomb's law holds even within atoms, correctly describing the force between the positively
charged atomic nucleus and each of the negatively charged electrons. This simple law also
correctly accounts for the forces that bind atoms together to form molecules and for the forces
that bind atoms and molecules together to form solids and liquids. Generally, as the distance
between ions increases, the force of attraction, and binding energy, approach zero and ionic
bonding is less favorable. As the magnitude of opposing charges increases, energy increases
and ionic bonding is more favorable.

Relation to Gauss's law [ edit ]

This article duplicates the scope of other articles,
specifically Gauss's_law#Relation_to_Coulomb's_law. Please
discuss this issue and help introduce a summary style to the
article.

Deriving Gauss's law from Coulomb's law [ edit ]

This section is an excerpt from Gauss's law § Deriving Gauss's law from Coulomb's law.
[ edit ]

[citation needed] Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone,
since Coulomb's law gives the electric field due to an individual, electrostatic point charge only.
However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the
electric field obeys the superposition principle. The superposition principle states that the
resulting field is the vector sum of fields generated by each particle (or the integral, if the
charges are distributed smoothly in space).

Outline of proof

Coulomb's law states that the electric field due to a stationary point charge is:

where

er is the radial unit vector,
r is the radius, | r |,
ε0 is the electric constant,
q is the charge of the particle, which is assumed to be located at the origin.

Using the expression from Coulomb's law, we get the total field at r by using an
integral to sum the field at r due to the infinitesimal charge at each other point s
in space, to give

where ρ is the charge density. If we take the divergence of both sides of this
equation with respect to r, and use the known theorem[26]

where δ(r) is the Dirac delta function, the result is

Using the "sifting property" of the Dirac delta function, we arrive at

which is the differential form of Gauss's law, as desired.

Since Coulomb's law only applies to stationary charges, there is no reason to expect Gauss's
law to hold for moving charges based on this derivation alone. In fact, Gauss's law does hold
for moving charges, and, in this respect, Gauss's law is more general than Coulomb's law.

Proof (without Dirac Delta)

Let  be a bounded open set, and

be the electric field, with  a continuous function (density of charge).

It is true for all  that .

Consider now a compact set  having a piecewise smooth boundary 
such that . It follows that  and so, for the
divergence theorem:

But because ,

for the argument above (  and
then )

Therefore the flux through a closed surface generated by some charge density
outside (the surface) is null.

Now consider , and  as the sphere centered in  having
 as radius (it exists because  is an open set).

Let  and  be the electric field created inside and outside the sphere
respectively. Then,

, 

and 

The last equality follows by observing that , and
the argument above.

The RHS is the electric flux generated by a charged sphere, and so:

with 

Where the last equality follows by the mean value theorem for integrals. Using
the squeeze theorem and the continuity of , one arrives at:

Deriving Coulomb's law from Gauss's law [ edit ]

Strictly speaking, Coulomb's law cannot be derived from Gauss's law alone, since Gauss's law
does not give any information regarding the curl of E (see Helmholtz decomposition and
Faraday's law). However, Coulomb's law can be proven from Gauss's law if it is assumed, in
addition, that the electric field from a point charge is spherically symmetric (this assumption,
like Coulomb's law itself, is exactly true if the charge is stationary, and approximately true if the
charge is in motion).

Outline of proof

Taking S in the integral form of Gauss's law to be a spherical surface of radius r,
centered at the point charge Q, we have

By the assumption of spherical symmetry, the integrand is a constant which can
be taken out of the integral. The result is

where r̂ is a unit vector pointing radially away from the charge. Again by
spherical symmetry, E points in the radial direction, and so we get

which is essentially equivalent to Coulomb's law. Thus the inverse-square law
dependence of the electric field in Coulomb's law follows from Gauss's law.

In relativity [ edit ]

Coulomb's law can be used to gain insight into the form of the magnetic field generated by
moving charges since by special relativity, in certain cases the magnetic field can be shown to
be a transformation of forces caused by the electric field. When no acceleration is involved in a
particle's history, Coulomb's law can be assumed on any test particle in its own inertial frame,
supported by symmetry arguments in solving Maxwell's equation, shown above. Coulomb's
law can be expanded to moving test particles to be of the same form. This assumption is
supported by Lorentz force law which, unlike Coulomb's law is not limited to stationary test
charges. Considering the charge to be invariant of observer, the electric and magnetic fields of
a uniformly moving point charge can hence be derived by the Lorentz transformation of the
four force on the test charge in the charge's frame of reference given by Coulomb's law and
attributing magnetic and electric fields by their definitions given by the form of Lorentz force.[27]

The fields hence found for uniformly moving point charges are given by:[28]

where  is the charge of the point source,  is the position vector from the point source to the
point in space,  is the velocity vector of the charged particle,  is the ratio of speed of the
charged particle divided by the speed of light and  is the angle between  and .

This form of solutions need not obey Newton's third law as is the case in the framework of
special relativity (yet without violating relativistic-energy momentum conservation).[29] Note that
the expression for electric field reduces to Coulomb's law for non-relativistic speeds of the
point charge and that the magnetic field in non-relativistic limit (approximating ) can be
applied to electric currents to get the Biot–Savart law. These solutions, when expressed in
retarded time also correspond to the general solution of Maxwell's equations given by solutions
of Liénard–Wiechert potential, due to the validity of Coulomb's law within its specific range of
application. Also note that the spherical symmetry for gauss law on stationary charges is not
valid for moving charges owing to the breaking of symmetry by the specification of direction of
velocity in the problem. Agreement with Maxwell's equations can also be manually verified for
the above two equations.[30]

Coulomb potential [ edit ]

See also: Electric potential

Quantum field theory [ edit ]

This article may be too technical for most readers to
understand. Please help improve it to make it understandable
to non-experts, without removing the technical details.
(October 2020) (Learn how and when to remove this message)

The Coulomb potential admits continuum states (with E >
0), describing electron-proton scattering, as well as
discrete bound states, representing the hydrogen atom.[31]

It can also be derived within the non-relativistic limit
between two charged particles, as follows:

Under Born approximation, in non-relativistic quantum
mechanics, the scattering amplitude  is:

This is to be compared to the:

where we look at the (connected) S-matrix entry for two electrons scattering off each other,
treating one with "fixed" momentum as the source of the potential, and the other scattering off
that potential.

Using the Feynman rules to compute the S-matrix element, we obtain in the non-relativistic
limit with 

Comparing with the QM scattering, we have to discard the  as they arise due to differing
normalizations of momentum eigenstate in QFT compared to QM and obtain:

where Fourier transforming both sides, solving the integral and taking  at the end will
yield

as the Coulomb potential.[32]

However, the equivalent results of the classical Born derivations for the Coulomb problem are
thought to be strictly accidental.[33][34]

The Coulomb potential, and its derivation, can be seen as a special case of the Yukawa
potential, which is the case where the exchanged boson – the photon – has no rest mass.[31]

Verification [ edit ]

This section may contain an excessive amount of intricate
detail that may interest only a particular audience. Please
help by spinning off or relocating any relevant information, and
removing excessive detail that may be against Wikipedia's
inclusion policy. (October 2020) (Learn how and when to remove

this message)

It is possible to verify Coulomb's law with a simple
experiment. Consider two small spheres of mass 
and same-sign charge , hanging from two ropes of
negligible mass of length . The forces acting on each
sphere are three: the weight , the rope tension 
and the electric force . In the equilibrium state:

(1)

and

(2)

Dividing (1) by (2):

(3)

Let  be the distance between the charged spheres; the repulsion force between them ,
assuming Coulomb's law is correct, is equal to

(Coulomb's law)

so:

(4)

If we now discharge one of the spheres, and we put it in contact with the charged sphere, each
one of them acquires a charge . In the equilibrium state, the distance between the charges
will be  and the repulsion force between them will be:

(5)

We know that  and:

Dividing (4) by (5), we get:

(6)

Measuring the angles  and  and the distance between the charges  and  is sufficient
to verify that the equality is true taking into account the experimental error. In practice, angles
can be difficult to measure, so if the length of the ropes is sufficiently great, the angles will be
small enough to make the following approximation:

(7)

Using this approximation, the relationship (6) becomes the much simpler expression:

(8)

In this way, the verification is limited to measuring the distance between the charges and
checking that the division approximates the theoretical value.

See also [ edit ]

References [ edit ]
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In the image, the vector F1 is the force experienced
by q1, and the vector F2 is the force experienced by
q2. When q1q2 > 0 the forces are repulsive (as in the
image) and when q1q2 < 0 the forces are attractive
(opposite to the image). The magnitude of the forces
will always be equal.

If two charges have the same
sign, the electrostatic force
between them is repulsive; if they
have different sign, the force
between them is attractive.
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Coulomb's inverse-square law, or simply Coulomb's
law, is an experimental law[1] of physics that calculates the
amount of force between two electrically charged particles
at rest. This electric force is conventionally called the
electrostatic force or Coulomb force.[2] Although the law
was known earlier, it was first published in 1785 by French
physicist Charles-Augustin de Coulomb. Coulomb's law
was essential to the development of the theory of
electromagnetism and maybe even its starting point,[1] as it
allowed meaningful discussions of the amount of electric
charge in a particle.[3]

The law states that the magnitude, or absolute value, of
the attractive or repulsive electrostatic force between two
point charges is directly proportional to the product of the
magnitudes of their charges and inversely proportional to
the square of the distance between them.[4]

Coulomb discovered that bodies with like
electrical charges repel:

It follows therefore from these three
tests, that the repulsive force that the
two balls – [that were] electrified with
the same kind of electricity – exert on
each other, follows the inverse
proportion of the square of the distance.
[5]

Coulomb also showed that oppositely charged
bodies attract according to an inverse-square
law:

Here, ke is a constant, q1 and q2 are the
quantities of each charge, and the scalar r is the
distance between the charges.

The force is along the straight line joining the two
charges. If the charges have the same sign, the
electrostatic force between them makes them
repel; if they have different signs, the force between them makes them attract.

Being an inverse-square law, the law is similar to Isaac Newton's inverse-square law of
universal gravitation, but gravitational forces always make things attract, while electrostatic
forces make charges attract or repel. Also, gravitational forces are much weaker than
electrostatic forces.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the
case of a single point charge at rest, the two laws are equivalent, expressing the same
physical law in different ways.[6] The law has been tested extensively, and observations have
upheld the law on the scale from 10−16 m to 108 m.[6]

History [ edit ]

Ancient cultures around the Mediterranean knew that
certain objects, such as rods of amber, could be rubbed
with cat's fur to attract light objects like feathers and pieces
of paper. Thales of Miletus made the first recorded
description of static electricity around 600 BC,[7] when he
noticed that friction could make a piece of amber attract
small objects.[8][9]

In 1600, English scientist William Gilbert made a careful
study of electricity and magnetism, distinguishing the
lodestone effect from static electricity produced by rubbing
amber.[8] He coined the Neo-Latin word electricus ("of
amber" or "like amber", from ἤλεκτρον [elektron], the
Greek word for "amber") to refer to the property of

attracting small objects after being rubbed.[10] This association gave rise to the English words
"electric" and "electricity", which made their first appearance in print in Thomas Browne's
Pseudodoxia Epidemica of 1646.[11]

Early investigators of the 18th century who suspected that the electrical force diminished with
distance as the force of gravity did (i.e., as the inverse square of the distance) included Daniel
Bernoulli[12] and Alessandro Volta, both of whom measured the force between plates of a
capacitor, and Franz Aepinus who supposed the inverse-square law in 1758.[13]

Based on experiments with electrically charged spheres, Joseph Priestley of England was
among the first to propose that electrical force followed an inverse-square law, similar to
Newton's law of universal gravitation. However, he did not generalize or elaborate on this.[14] In
1767, he conjectured that the force between charges varied as the inverse square of the
distance.[15][16]

In 1769, Scottish physicist John Robison announced that,
according to his measurements, the force of repulsion
between two spheres with charges of the same sign varied
as x−2.06.[17]

In the early 1770s, the dependence of the force between
charged bodies upon both distance and charge had
already been discovered, but not published, by Henry
Cavendish of England.[18] In his notes, Cavendish wrote,
"We may therefore conclude that the electric attraction and
repulsion must be inversely as some power of the distance
between that of the 2 + 1

50th and that of the 2 − 1
50th, and

there is no reason to think that it differs at all from the
inverse duplicate ratio".

Finally, in 1785, the French physicist Charles-Augustin de Coulomb published his first three
reports of electricity and magnetism where he stated his law. This publication was essential to
the development of the theory of electromagnetism.[4] He used a torsion balance to study the
repulsion and attraction forces of charged particles, and determined that the magnitude of the
electric force between two point charges is directly proportional to the product of the charges
and inversely proportional to the square of the distance between them.

The torsion balance consists of a bar suspended from its middle by a thin fiber. The fiber acts
as a very weak torsion spring. In Coulomb's experiment, the torsion balance was an insulating
rod with a metal-coated ball attached to one end, suspended by a silk thread. The ball was
charged with a known charge of static electricity, and a second charged ball of the same
polarity was brought near it. The two charged balls repelled one another, twisting the fiber
through a certain angle, which could be read from a scale on the instrument. By knowing how
much force it took to twist the fiber through a given angle, Coulomb was able to calculate the
force between the balls and derive his inverse-square proportionality law.

Mathematical form [ edit ]

Coulomb's law states that the
electrostatic force  experienced by a
charge,  at position , in the vicinity
of another charge,  at position , in a
vacuum is equal to[19]

where  is the
displacement vector between the charges,  a unit vector pointing from  to , and  the
electric constant. Here,  is used for the vector notation. The electrostatic force 
experienced by , according to Newton's third law, is .

If both charges have the same sign (like charges) then the product  is positive and the
direction of the force on  is given by ; the charges repel each other. If the charges have
opposite signs then the product  is negative and the direction of the force on  is ;
the charges attract each other.[20]

System of discrete charges [ edit ]

The law of superposition allows Coulomb's law to be extended to include any number of point
charges. The force acting on a point charge due to a system of point charges is simply the
vector addition of the individual forces acting alone on that point charge due to each one of the
charges. The resulting force vector is parallel to the electric field vector at that point, with that
point charge removed.

Force  on a small charge  at position , due to a system of  discrete charges in vacuum
is[19]

where  is the magnitude of the ith charge,  is the vector from its position to  and  is the
unit vector in the direction of .

Continuous charge distribution [ edit ]

In this case, the principle of linear superposition is also used. For a continuous charge
distribution, an integral over the region containing the charge is equivalent to an infinite
summation, treating each infinitesimal element of space as a point charge . The distribution
of charge is usually linear, surface or volumetric.

For a linear charge distribution (a good approximation for charge in a wire) where  gives
the charge per unit length at position , and  is an infinitesimal element of length,[21]

For a surface charge distribution (a good approximation for charge on a plate in a parallel plate
capacitor) where  gives the charge per unit area at position , and  is an
infinitesimal element of area,

For a volume charge distribution (such as charge within a bulk metal) where  gives the
charge per unit volume at position , and  is an infinitesimal element of volume,[20]

The force on a small test charge  at position  in vacuum is given by the integral over the
distribution of charge

The "continuous charge" version of Coulomb's law is never supposed to be applied to locations
for which  because that location would directly overlap with the location of a
charged particle (e.g. electron or proton) which is not a valid location to analyze the electric
field or potential classically. Charge is always discrete in reality, and the "continuous charge"
assumption is just an approximation that is not supposed to allow  to be
analyzed.

Coulomb constant [ edit ]

The constant of proportionality, , in Coulomb's law:

is a consequence of historical choices for units.[19]: 4–2 

The constant  is the vacuum electric permittivity.[22] Using the CODATA 2022 recommended
value for ,[23] the Coulomb constant[24] is

Limitations [ edit ]

There are three conditions to be fulfilled for the validity of Coulomb's inverse square law:[25]

1. The charges must have a spherically symmetric distribution (e.g. be point charges, or a
charged metal sphere).

2. The charges must not overlap (e.g. they must be distinct point charges).
3. The charges must be stationary with respect to a nonaccelerating frame of reference.

The last of these is known as the electrostatic approximation. When movement takes place, an
extra factor is introduced, which alters the force produced on the two objects. This extra part of
the force is called the magnetic force. For slow movement, the magnetic force is minimal and
Coulomb's law can still be considered approximately correct. A more accurate approximation in
this case is, however, the Weber force. When the charges are moving more quickly in relation
to each other or accelerations occur, Maxwell's equations and Einstein's theory of relativity
must be taken into consideration.

Electric field [ edit ]

Main article: Electric field

An electric field is a vector field that associates to each
point in space the Coulomb force experienced by a unit
test charge.[19] The strength and direction of the Coulomb
force  on a charge  depends on the electric field 
established by other charges that it finds itself in, such that

. In the simplest case, the field is considered to
be generated solely by a single source point charge. More
generally, the field can be generated by a distribution of
charges who contribute to the overall by the principle of
superposition.

If the field is generated by a positive source point charge ,
the direction of the electric field points along lines directed
radially outwards from it, i.e. in the direction that a positive
point test charge  would move if placed in the field. For a
negative point source charge, the direction is radially inwards.

The magnitude of the electric field E can be derived from Coulomb's law. By choosing one of
the point charges to be the source, and the other to be the test charge, it follows from
Coulomb's law that the magnitude of the electric field E created by a single source point
charge Q at a certain distance from it r in vacuum is given by

A system of n discrete charges  stationed at  produces an electric field whose
magnitude and direction is, by superposition

Atomic forces [ edit ]

See also: Coulomb explosion

Coulomb's law holds even within atoms, correctly describing the force between the positively
charged atomic nucleus and each of the negatively charged electrons. This simple law also
correctly accounts for the forces that bind atoms together to form molecules and for the forces
that bind atoms and molecules together to form solids and liquids. Generally, as the distance
between ions increases, the force of attraction, and binding energy, approach zero and ionic
bonding is less favorable. As the magnitude of opposing charges increases, energy increases
and ionic bonding is more favorable.

Relation to Gauss's law [ edit ]

This article duplicates the scope of other articles,
specifically Gauss's_law#Relation_to_Coulomb's_law. Please
discuss this issue and help introduce a summary style to the
article.

Deriving Gauss's law from Coulomb's law [ edit ]

This section is an excerpt from Gauss's law § Deriving Gauss's law from Coulomb's law.
[ edit ]

[citation needed] Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone,
since Coulomb's law gives the electric field due to an individual, electrostatic point charge only.
However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the
electric field obeys the superposition principle. The superposition principle states that the
resulting field is the vector sum of fields generated by each particle (or the integral, if the
charges are distributed smoothly in space).

Outline of proof

Coulomb's law states that the electric field due to a stationary point charge is:

where

er is the radial unit vector,
r is the radius, | r |,
ε0 is the electric constant,
q is the charge of the particle, which is assumed to be located at the origin.

Using the expression from Coulomb's law, we get the total field at r by using an
integral to sum the field at r due to the infinitesimal charge at each other point s
in space, to give

where ρ is the charge density. If we take the divergence of both sides of this
equation with respect to r, and use the known theorem[26]

where δ(r) is the Dirac delta function, the result is

Using the "sifting property" of the Dirac delta function, we arrive at

which is the differential form of Gauss's law, as desired.

Since Coulomb's law only applies to stationary charges, there is no reason to expect Gauss's
law to hold for moving charges based on this derivation alone. In fact, Gauss's law does hold
for moving charges, and, in this respect, Gauss's law is more general than Coulomb's law.

Proof (without Dirac Delta)

Let  be a bounded open set, and

be the electric field, with  a continuous function (density of charge).

It is true for all  that .

Consider now a compact set  having a piecewise smooth boundary 
such that . It follows that  and so, for the
divergence theorem:

But because ,

for the argument above (  and
then )

Therefore the flux through a closed surface generated by some charge density
outside (the surface) is null.

Now consider , and  as the sphere centered in  having
 as radius (it exists because  is an open set).

Let  and  be the electric field created inside and outside the sphere
respectively. Then,

, 

and 

The last equality follows by observing that , and
the argument above.

The RHS is the electric flux generated by a charged sphere, and so:

with 

Where the last equality follows by the mean value theorem for integrals. Using
the squeeze theorem and the continuity of , one arrives at:

Deriving Coulomb's law from Gauss's law [ edit ]

Strictly speaking, Coulomb's law cannot be derived from Gauss's law alone, since Gauss's law
does not give any information regarding the curl of E (see Helmholtz decomposition and
Faraday's law). However, Coulomb's law can be proven from Gauss's law if it is assumed, in
addition, that the electric field from a point charge is spherically symmetric (this assumption,
like Coulomb's law itself, is exactly true if the charge is stationary, and approximately true if the
charge is in motion).

Outline of proof

Taking S in the integral form of Gauss's law to be a spherical surface of radius r,
centered at the point charge Q, we have

By the assumption of spherical symmetry, the integrand is a constant which can
be taken out of the integral. The result is

where r̂ is a unit vector pointing radially away from the charge. Again by
spherical symmetry, E points in the radial direction, and so we get

which is essentially equivalent to Coulomb's law. Thus the inverse-square law
dependence of the electric field in Coulomb's law follows from Gauss's law.

In relativity [ edit ]

Coulomb's law can be used to gain insight into the form of the magnetic field generated by
moving charges since by special relativity, in certain cases the magnetic field can be shown to
be a transformation of forces caused by the electric field. When no acceleration is involved in a
particle's history, Coulomb's law can be assumed on any test particle in its own inertial frame,
supported by symmetry arguments in solving Maxwell's equation, shown above. Coulomb's
law can be expanded to moving test particles to be of the same form. This assumption is
supported by Lorentz force law which, unlike Coulomb's law is not limited to stationary test
charges. Considering the charge to be invariant of observer, the electric and magnetic fields of
a uniformly moving point charge can hence be derived by the Lorentz transformation of the
four force on the test charge in the charge's frame of reference given by Coulomb's law and
attributing magnetic and electric fields by their definitions given by the form of Lorentz force.[27]

The fields hence found for uniformly moving point charges are given by:[28]

where  is the charge of the point source,  is the position vector from the point source to the
point in space,  is the velocity vector of the charged particle,  is the ratio of speed of the
charged particle divided by the speed of light and  is the angle between  and .

This form of solutions need not obey Newton's third law as is the case in the framework of
special relativity (yet without violating relativistic-energy momentum conservation).[29] Note that
the expression for electric field reduces to Coulomb's law for non-relativistic speeds of the
point charge and that the magnetic field in non-relativistic limit (approximating ) can be
applied to electric currents to get the Biot–Savart law. These solutions, when expressed in
retarded time also correspond to the general solution of Maxwell's equations given by solutions
of Liénard–Wiechert potential, due to the validity of Coulomb's law within its specific range of
application. Also note that the spherical symmetry for gauss law on stationary charges is not
valid for moving charges owing to the breaking of symmetry by the specification of direction of
velocity in the problem. Agreement with Maxwell's equations can also be manually verified for
the above two equations.[30]

Coulomb potential [ edit ]

See also: Electric potential

Quantum field theory [ edit ]

This article may be too technical for most readers to
understand. Please help improve it to make it understandable
to non-experts, without removing the technical details.
(October 2020) (Learn how and when to remove this message)

The Coulomb potential admits continuum states (with E >
0), describing electron-proton scattering, as well as
discrete bound states, representing the hydrogen atom.[31]

It can also be derived within the non-relativistic limit
between two charged particles, as follows:

Under Born approximation, in non-relativistic quantum
mechanics, the scattering amplitude  is:

This is to be compared to the:

where we look at the (connected) S-matrix entry for two electrons scattering off each other,
treating one with "fixed" momentum as the source of the potential, and the other scattering off
that potential.

Using the Feynman rules to compute the S-matrix element, we obtain in the non-relativistic
limit with 

Comparing with the QM scattering, we have to discard the  as they arise due to differing
normalizations of momentum eigenstate in QFT compared to QM and obtain:

where Fourier transforming both sides, solving the integral and taking  at the end will
yield

as the Coulomb potential.[32]

However, the equivalent results of the classical Born derivations for the Coulomb problem are
thought to be strictly accidental.[33][34]

The Coulomb potential, and its derivation, can be seen as a special case of the Yukawa
potential, which is the case where the exchanged boson – the photon – has no rest mass.[31]

Verification [ edit ]

This section may contain an excessive amount of intricate
detail that may interest only a particular audience. Please
help by spinning off or relocating any relevant information, and
removing excessive detail that may be against Wikipedia's
inclusion policy. (October 2020) (Learn how and when to remove

this message)

It is possible to verify Coulomb's law with a simple
experiment. Consider two small spheres of mass 
and same-sign charge , hanging from two ropes of
negligible mass of length . The forces acting on each
sphere are three: the weight , the rope tension 
and the electric force . In the equilibrium state:

(1)

and

(2)

Dividing (1) by (2):

(3)

Let  be the distance between the charged spheres; the repulsion force between them ,
assuming Coulomb's law is correct, is equal to

(Coulomb's law)

so:

(4)

If we now discharge one of the spheres, and we put it in contact with the charged sphere, each
one of them acquires a charge . In the equilibrium state, the distance between the charges
will be  and the repulsion force between them will be:

(5)

We know that  and:

Dividing (4) by (5), we get:

(6)

Measuring the angles  and  and the distance between the charges  and  is sufficient
to verify that the equality is true taking into account the experimental error. In practice, angles
can be difficult to measure, so if the length of the ropes is sufficiently great, the angles will be
small enough to make the following approximation:

(7)

Using this approximation, the relationship (6) becomes the much simpler expression:

(8)

In this way, the verification is limited to measuring the distance between the charges and
checking that the division approximates the theoretical value.

See also [ edit ]
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Scopo dell’esperienza

1) Verificare l’esistenza di una carica elettrica fondamentale: e 
della quale ogni altra carica è un multiplo intero

2) Misurare il valore di tale carica elettrica fondamentale
3) Usare il Metodo delle goccioline d’olio elettrizzate sviluppato 

da R. Millikan.

Principio di quantizzazione della carica elettrica

D. Pieroni, M.L. De Giorgi, L. Girlanda, L. Martina, A. Ventura: 
L’esperimento della goccia d’olio di Millikan con l’ausilio di Tracker 
La Fisica nella Scuola (2021)



Cenni storici

https://physics.nist.gov/cgi-bin/cuu/Value?e|search_for=electron+charge

Il nuovo Amaldi per i licei scientifici, Cap. 27 n. 5

• Nel periodo 1909-’13 Robert Millikan fu il primo a misurare la 
carica dell’elettrone, eseguendo l’esperimento della “goccia d’olio”.
• Il lavoro gli valse, 10 anni più tardi, il premio Nobel.
• Il valore attualmente noto della carica dell’elettrone è                      

e = 1.602 176 565(35)×10−19 C 

Tabella Costanti della Fisica
http://pdg.lbl.gov/2014/reviews/rpp2014-rev-phys-constants.pdf

R. Millikan, Physical Review , vol.  II ser II (1913) p. 109-143 

https://history.aip.org/exhibits/gap/Millikan/Millikan.html

https://physics.nist.gov/cgi-bin/cuu/Value%3Fe%7Csearch_for=electron+charge
http://pdg.lbl.gov/2014/reviews/rpp2014-rev-phys-constants.pdf
https://history.aip.org/exhibits/gap/Millikan/Millikan.html


L’ idea della misura

-q

q 

d

Confrontare forze che agiscono su una piccola particella (goccia di olio di silicone) 
elettricamente carica  e  otticamente osservabile. 

dFcoulomb = 

=	−
𝝙𝑽
𝒅 	 '𝒛



L’apparato strumentale
•  Piano di base
•  Microscopio con oculare e micrometro
•  Condensatore piano racchiuso in una scatola dielettrica
• Proiettore per l’ illuminazione
• Nebulizzatore 
• Pompetta manuale 
• Base d’appoggio
• Olio di silicone
• Alimentatore regolabile a tensione corrente continua
• Video-camera per l’acquisizione delle immagini in tempo reale



Dati tecnici e Parametri ambientali
• Distanza tra le armature del condensatore: d = 5.7±0.1 mm
• Densità dell’olio di silicone e dell’aria

Ør = 0.877 g/cm3  (a 15°C)                          r = 0.871 g/cm3  (a 25°C)
Øraria = 1.225 x 10-3 g/cm3  (a 15°C) raria = 1.185 x 10-3 g/cm3  (a 25°C)

• Viscosità dell’aria  
haria=1.813·10-5 Pa s  (20 oC)         haria=1.907·10-5 Pa s  (40 oC)

T

                                                                                       1 Pa = !	#
!	$!

Sforzo tangenziale = %
&
= 	𝜂 '(

')
  

Coefficiente di viscosità dinamica = h  Pa s 



• Ingrandimento dell’oculare: 10
• Ingrandimento dell’obiettivo: 2
• Scala del micrometro:  5.0 mm
• Graduazione della scala: nominale  0.50 mm/divisione grande

  misurata     (0.493±0.009) mm. 

• Intervallo di tensione dell’alimentatore: 0-600 V

𝒍𝟎 =

𝜆



Modellizzazione

Forza di attrito viscoso di Stokes

Equilibrio tra
Forza Peso e
Attrito Viscoso

Velocità di derivaI)

Forza Peso

Forza di attrito viscoso

Forza di attrito viscoso
+ correzione di scivolamento di Cunningham 
libero cammino medio tra molecole di aria 𝜆 = 0.07  𝜇 m, A = 0.817 (1 atm, 23 oC)

Fvisc = - 6 p R h v / (1+ A 𝜆/R ) 

Fvisc = - 6 p R h v  

•La forze che agiscono verticalmente sulla goccia sono:
1. la forza peso (mg), 
2. la spinta di Archimede. (trascurabile) 
3. L’attrito  viscoso (Fvisc)  
4. la forza coulombiana (q E)

m g =

(1+ A 𝜆/R ) !
"#

$!%$
& πη!
" =

R↓
(1+ A 𝜆/R )

3!

⇒	 1 + 𝐴𝜆/R !/#	𝑅 = $	&
#	'	(

	𝑣⇃	.	 ⟹ 𝑅	 ≊ $	&
#	'	(

	𝑣↓	 - +4
#
	



Modellizzazione - 2

Equilibrio tra
Forza Peso, Forza di attrito
e Forza di Coulomb

Carica della gocciolina

Campo elettrico
in un condensatore piano

II)
E = V

d
D

(1+ A 𝜆/R )

𝑞 =
𝑑
∆	𝑉

6	𝜋	𝜂	𝑅
1 + 𝐴	𝜆/𝑅

	𝑣↿ +	𝑣⇃ 	≈
6	𝜋	𝜂	𝑑
∆	𝑉

𝑅	 − 𝐴	𝜆 	𝑣↿ +	𝑣⇃

𝑞 =
6	𝜋	𝜂	𝑑
∆	𝑉

9	𝜂
2	𝜌	𝑔

	𝑣↓	 −
3
2
𝐴	𝜆 	𝑣↑ + 𝑣↓



Procedura sperimentale - 1
• Agendo sulla pompetta si immettono delle goccioline d’olio tra le 

armature del condensatore piano, contenuto all’interno di una scatola, 
attraverso due appositi forellini.
• Alcune goccioline si caricano elettricamente per strofinio con l’aria (con 

carica q). 
• Si controllano solo le cariche che si dirigono verso l’alto  sotto l’azione del 

campo elettrico (V >0), quindi contro il campo gravitazionale. La polarità 
delle armature ci dice che si tratta di cariche negative.

Dobbiamo misurare :
• La d.d.p.  V dal Voltmetro dell’alimentatore
• Le velocità di deriva v ↓ e v↑  da misure di

Ø   intervallo spaziale s prefissato sul micrometro 
Ø  il tempo t necessario per percorrerlo con un cronometro



Procedura sperimentale -2
I. Si fissi il potenziale al valore di fondo scala
II. Si individui una goccia che «salga» e, agendo sul potenziometro, la 

si fermi in una posizione di riferimento.
III. Si scelga un traguardo a distanza s-su . Si  registri s-su.
IV. Si porti il potenziale ad un valore più alto e si faccia partire il 

cronometro: si  registri il potenziale V.
V. Si segua la particella fino al raggiungimento del traguardo e si 

blocchi il cronometro. Si registri il tempo t-su misurato dal 
cronometro   (nel caso di video l’intervallo tra due fotogrammi è dt 
= 1/25 sec) 

VI. Si abbassi il potenziale fino a fermare la gocciolina
VII. Si scelga un traguardo a distanza s-giù . Si  registri s-giù.
VIII. Si ponga V=0 e si faccia partire il cronometro
IX. Si segua la particella fino al raggiungimento del traguardo e si 

blocchi il cronometro. Si registri il tempo  t-giù misurato dal 
cronometro

X. Riportare di volta in volta gli errori di misura



Elaborazione dei Dati
• Preparare una tabella con i dati misurati

• Calcolare                  v↑ = s ↑	/t ↑       e          v↓ = s ↓ /t 

• Calcolare il raggio della goccia  R e q
       

v-su Dr(vu-su) v-giù Dr(v-giù)

10^-3 m/sec m/sec

0,191 0,11 0,195 0,17

R nudo Cunningham R corretto Dr( R ) D (Rcorretto ) q Dr(q) D( q) q/e

10^-6 m 10^-6 m 10^-6 m 10^-6 m 10^-19 C 10^-19 C

0,383 0,057 0,440 0,058 0,026 2,75 0,21 0,58 1,7

0,353 0,057 0,411 0,114 0,047 1,40 0,40 0,56 0,9

0,212 0,057 0,269 0,101 0,027 1,16 0,39 0,45 0,7

0,336 0,057 0,393 0,113 0,044 1,47 0,39 0,58 0,9

Parametri Parametri D(Parametri) Dr(Parametri V DV DrV s-su D(s-su) Dr(s-su) t-su D(t-su) Dr(t-su) s-giù D(s-giù) Dr(s-giù) t-giù D(t-giù) Dr(t-giù)

T (K) 296 2 0,007 Volt Volt 10^-3 m 10^-3 m sec sec 10^-3 m 10^-3 m sec sec

rho (kg/m^3) 0,8722 0,001 0,001 600 2 0,003 2 0,25 0,125 15,41 0,1 0,01 2 0,25 0,13 13,11 0,1 0,01

eta (10^-5 Pa s) 1,8271 0,001 0,001 600 2 0,003 1 0,25 0,25 33,25 0,1 0,00 1 0,25 0,25 7,7 0,1 0,01

g (m/sec^2) 9,80247 0,00001 0,000 600 2 0,003 1 0,25 0,25 4,28 0,1 0,02 1 0,25 0,25 21,42 0,1 0,00

A 0,817 0,001 0,001 600 2 0,003 1 0,25 0,25 16,25 0,1 0,01 1 0,25 0,25 8,51 0,1 0,01



Studio delle incertezze
� Le principali  fonti di incertezza derivano dalle misure di 
s e t

∆	𝒗
𝒗
= ∆	𝒔

𝒔
+ ∆	𝒕

𝒕

� Altre fonti di incertezza rilevanti riguardano:
� Dipendenza dei valori di h e r dalla temperatura
� Correzione da slittamento 
∆	𝑹
𝑹 = ∆	𝑹𝒏𝒖𝒅𝒐

𝑪𝒖𝒏𝒏.;	𝑹𝒏𝒖𝒅𝒐
, ∆	𝑹𝒏𝒖𝒅𝒐

	𝑹𝒏𝒖𝒅𝒐 	=
<
=

∆	𝜼
𝜼 + ∆	𝝆

𝝆 + ∆@↓
@↓

 

�
∆	𝒒
𝒒
= ∆	𝒅

𝒅
+ ∆	𝑽

𝑽
 + ∆	𝑹

𝑹
	+ ∆	(-↓.-↑)

-↓.-↑
	

� Si stimi l’impatto di tali incertezze sulla misura finale



vg vs r0 r1 q n eta A
3,34E-05 9,28E-05 9,42979E-07 8,71267E-07 3,46043E-19 2,162767205 1,82E-05 0,817
5,35E-05 4,04E-05 6,22285E-07 5,53277E-07 1,56191E-19 0,976192147
3,25E-05 9,46E-05 9,52335E-07 8,80569E-07 3,52648E-19 2,204050894
1,44E-04 7,02E-05 8,20464E-07 7,49557E-07 4,98937E-19 3,118359222
6,80E-05 9,68E-05 9,63442E-07 8,91614E-07 4,63599E-19 2,897491867
1,12E-04 7,44E-05 8,44698E-07 7,73615E-07 4,49463E-19 2,809144224
5,34E-05 3,97E-05 6,17025E-07 5,48083E-07 1,53227E-19 0,957670674
8,47E-05 1,19E-04 1,06979E-06 9,9743E-07 6,47576E-19 4,047352208
2,25E-05 1,23E-04 1,0858E-06 1,01337E-06 4,697E-19 2,935622046
4,99E-05 1,34E-04 1,13416E-06 1,06152E-06 6,24433E-19 3,902707302
5,07E-05 3,76E-05 6,00094E-07 5,31367E-07 1,40314E-19 0,876963184
5,44E-05 3,62E-05 5,88725E-07 5,20151E-07 1,40576E-19 0,878601625
5,39E-05 4,09E-05 6,25817E-07 5,56766E-07 1,58788E-19 0,992426937
5,66E-05 4,16E-05 6,31611E-07 5,62489E-07 1,66468E-19 1,04042358
1,97E-05 1,42E-04 1,16624E-06 1,09347E-06 5,65849E-19 3,536556831
3,35E-05 9,20E-05 9,38956E-07 8,67267E-07 3,4255E-19 2,140936767
4,66E-05 5,26E-05 7,10324E-07 6,40354E-07 1,94326E-19 1,214534677
8,38E-05 5,47E-05 7,23824E-07 6,53726E-07 2,77367E-19 1,733540786
6,86E-05 9,44E-05 9,51026E-07 8,79267E-07 4,51568E-19 2,822300143
6,65E-05 3,45E-04 1,81716E-06 1,74272E-06 2,35096E-18 14,69352918
6,23E-05 3,15E-05 5,49308E-07 4,81302E-07 1,33233E-19 0,832705288
3,45E-05 1,10E-04 1,02869E-06 9,56516E-07 4,39663E-19 2,747892437

Rapporto carica misurata/Valore di e tabulato
Velocità v↓ Velocità v↓Raggio  attrito 

Raggio  attrito
corretto Carica

Rapporto
con e CODATA 



Rappresentazione Grafica dei Dati

22

Elaborazione dati 

Sono state misurate 
le cariche di 39 
gocce. La maggior
parte delle gocce
acquisisce una
carica elementare.
Si riconosce la 
granularità.

Q/e ± Δ(Q/e)



Rappresentazione per Classi
q	x	10^19 q		> De(q)		> q-De(q) q	-	De(q) <q> sigma qi-q1 n1 (qi-q1)/n1 De1

4,88 3,29 0,54 2,75 3,83
5,74 3,43 0,56 2,87 3,99
10,95 3,77 0,57 3,20 4,35 3,77 0,41
6,48 4,13 0,68 3,45 4,81
5,00 4,21 0,47 3,73 4,68 1,05 1,00 1,05 0,72
8,14 4,36 0,63 3,73 5,00
13,18 4,88 0,56 4,32 5,44 4,82 0,31
5,04 5,00 0,68 4,32 5,67
16,21 5,04 1,09 3,94 6,13
3,29 5,40 0,53 4,86 5,93 2,01 2,00 1,01 0,36
6,00 5,48 0,91 4,57 6,39
5,58 5,58 0,93 4,65 6,52 5,78 0,40
4,13 5,74 0,76 4,97 6,50
3,43 6,00 0,99 5,01 6,99 6,22 4,00 1,55 0,10
10,87 6,48 0,87 5,61 7,36
15,35 8,14 1,78 6,36 9,92
5,48 10,87 1,85 9,02 12,72 9,99 1,60
5,40 10,95 1,90 9,05 12,85 11,15 6,00 1,86 0,53
3,77 13,18 2,27 10,91 15,45
4,21 15,35 1,13 14,22 16,49 14,91 1,56 Stima	intero
4,36 16,21 2,23 13,98 18,44 													Stima		carica	fond.	/errore	

e De
q	in	ordine		 						Intervalli	di	valori 						Valori	medi Differenze	
crescente per	le	q 					nelle	classi con	la		classe	1 1,41 0,23

												Individuazione	delle	classi Valori	medi Errore
delle	stime sulla	media

NB: Esempio basato su
una serie di misure 
diversa dalla precedente

In questo esempio,
l’errore  stimato 
della misura è del 23%



Test del 𝜒!

E’ un metodo statistico che consente di verificare se  due grandezze , diciamo x e y, siano legate da una certa 
ipotetica relazione  y = f ( x), supponendo di aver misurato  N coppie (xi, yi),  con N molto grande, e supponendo 
che le cause di errore nelle misure siano molto grandi e distribuite secondo la legge di Gauss (distribuzione 
Normale).
Se il valore atteso di yi  sia  f (xi ), si potrebbe verificare la bontà di questa ipotesi CALCOLANDO che  la quantità
	 𝜒#= !

,-!
	Σ./!, (𝑦_𝑖 − 𝑓(𝑥_i))#	/σ_i# 	≤ 1 

dove σ_i sono le deviazioni standard della misura 𝑥_i. 

Nel caso della misura della carica fondamentale la quantità misurata è xi = qi/e, dove e è il supposto valore vero della 
carica fondamentale. In tal caso f (𝑥_i) deve essere un numero intero, corrispondente a yi. Pertanto, bisogna 
verificare che 𝜒# 𝑒  = !

,-!
	Σ./!, ( qi/𝑒 −qi/𝑒)#	/ ∆qi/𝑒 # 	≤ 1 

per un opportuno valore 𝑒 , che ora è inteso variabile.
 



Applicazione del test del 𝜒! 
Esempio :

Cariche misurate

Deviazione  standard 0.20  x 10-19 C    (uniforme per tutti i valori) 

{6.48, 6.24, 5.66, 4.99, 4.7, 4.64, 4.52, 4.49, 4.4, 3.53, 3.46, 3, 43, 2.77, 1.94, 1.66, 1.59, 1.56, 1.53, 1.41, 1.4, 1.33} x 10-19 C
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Come si vede dal grafico, il valore che minimizza 𝜒#  è e = 1.51 x 10-19 C  ±0.20 x 10−19 C


