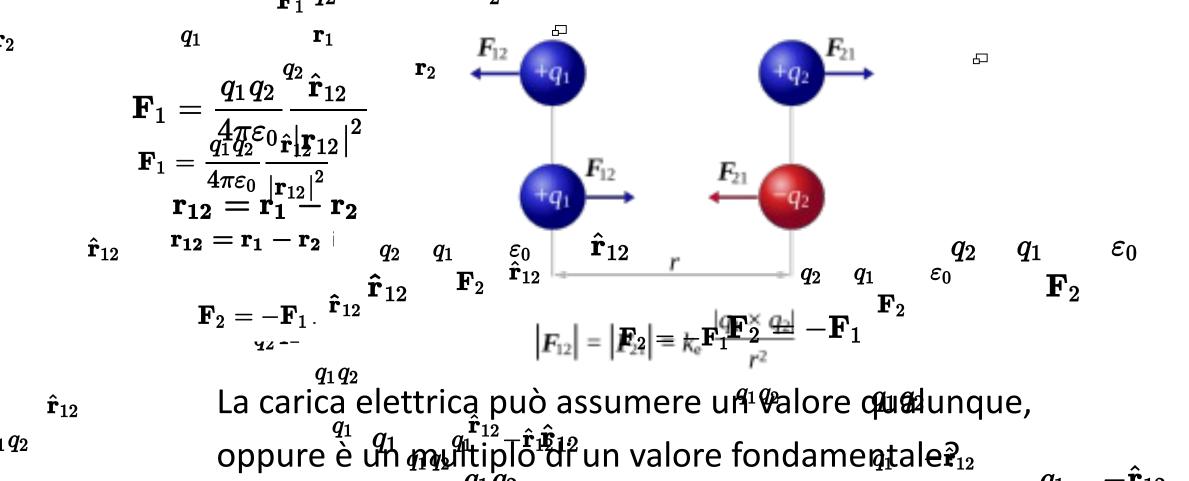


LABORATORIO DI FISICA MODERNA PLS 2023-'24

M.L. De Giorgi, L. Martina

Dipartimento di Matematica e Fisica «Ennio De Giorgi»

Università del Salento

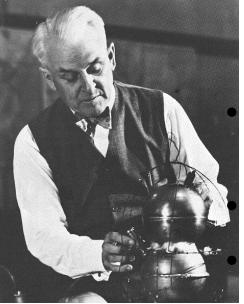

Sezione INFN - Lecce

Misura della Carica Elettrica Elementare: l'esperienza di Millikan

21/1/2025

La Forza di Coulomb e la carica elettrica

La carica elettrica è la proprietà fondamentale della materia, che mostra attrazione elettrostatica in presenza di altra materia, anch'essa dotata di carica.


Scopo dell'esperienza

 Verificare l'esistenza di una carica elettrica fondamentale: e della quale ogni altra carica è un multiplo intero

Principio di quantizzazione della carica elettrica

- 2) Misurare il valore di tale carica elettrica fondamentale
- 3) Usare il Metodo delle *goccioline d'olio elettrizzate* sviluppato da R. Millikan.

D. Pieroni, M.L. De Giorgi, L. Girlanda, L. Martina, A. Ventura: *L'esperimento della goccia d'olio di Millikan con l'ausilio di Tracke*r La Fisica nella Scuola (2021)

Cenni storici

Nel periodo 1909-'13 Robert Millikan fu il primo a misurare la carica dell'elettrone, eseguendo l'esperimento della "goccia d'olio".

Il lavoro gli valse, 10 anni più tardi, il premio Nobel.

Il valore attualmente noto della
e = 1.602 176 565(35)×10⁻¹⁹ C

The NIST Reference on Constants, Units, and Uncertainty

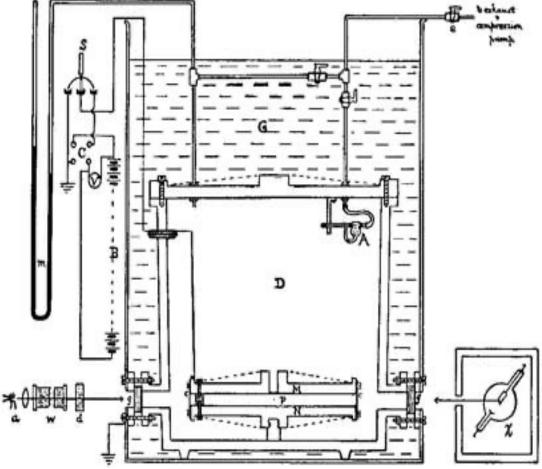
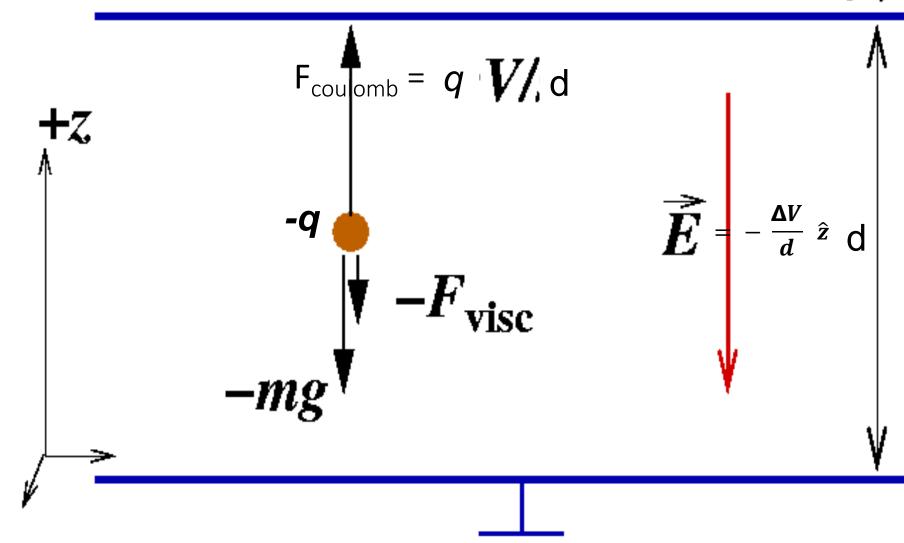

Fundamental Physical Constants https://physics.nist.gov/cgi-bin/cuu/Value?e|search_for=electron+cha

Tabella Costanti della Fisica

http://pdg.lbl.gov/2014/reviews/rpp2014-rev-phys-constants.pdf


https://history.aip.org/exhibits/gap/Millikan/Millikan.html

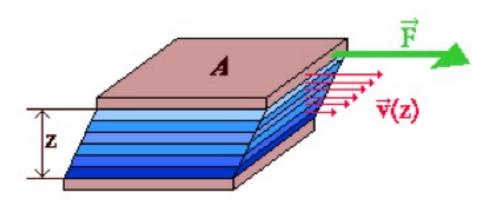
- R. Millikan, Physical Review, vol. II ser II (1913) p. 109-143
- Il nuovo Amaldi per i licei scientifici, Cap. 27 n. 5

L' idea della misura

Confrontare forze che agiscono su una piccola particella (goccia di olio di silicone) elettricamente carica e otticamente osservabile. +V

L'apparato strumentale

- Piano di base
- Microscopio con oculare e micrometro
- Condensatore piano racchiuso in una scatola dielettrical
- Proiettore per l' illuminazione
- Nebulizzatore
- Pompetta manuale
- Base d'appoggio
- Olio di silicone
- Alimentatore regolabile a tensione corrente continua
- Video-camera per l'acquisizione delle immagini in tempo reale


Dati tecnici e Parametri ambientali

- Distanza tra le armature del condensatore: d = 5.7±0.1 mm
- Densità dell'olio di silicone e dell'aria

 $\rho = 0.877 \text{ g/cm}^3 \text{ (a 15°C)}$ $\rho = 0.871 \text{ g/cm}^3 \text{ (a 25°C)}$ $\rho_{\text{aria}} = 1.225 \text{ x } 10^{-3} \text{ g/cm}^3 \text{ (a 15°C)}$ $\rho_{\text{aria}} = 1.185 \text{ x } 10^{-3} \text{ g/cm}^3 \text{ (a 25°C)}$

• Viscosità dell'aria

 $\eta_{\text{aria}}\text{=}1.813{\cdot}10^{\text{-5}}\,\text{Pa}\,\text{s}$ (20 °C)

Sforzo tangenziale =
$$\frac{F}{A} = \eta \frac{\Delta v}{\Delta z}$$

Coefficiente di viscosità dinamica = η Pa s
 $1 \text{ Pa} = \frac{1 N}{1 m^2}$

- Ingrandimento dell'oculare: 10
- Ingrandimento dell'obiettivo: 2
- Scala del micrometro: 5.0 mm

λ

- Graduazione della scala: nominale 0.50 mm/divisione grande misurata $l_0 = (0.493 \pm 0.009)$ mm.
- Intervallo di tensione dell'alimentatore: 0-600 V

Modellizzazione

 $F_{visc} = -6 \pi R \eta v / (1 + A \lambda/R)$

•La forze che agiscono verticalmente sulla goccia sono:

- 1. la forza peso (mg),
- 2. la spinta di Archimede. (trascurabile)
- 3. L'attrito viscoso (F_{visc})
- 4. la forza coulombiana (q E) Forza di attrito viscoso di Stokes $F_{visc} = -6 \pi R \eta V$

Forza di attrito viscoso

+ correzione di scivolamento di Cunningham

libero cammino medio tra molecole di aria λ = 0.07 μ m, A = 0.817 (1 atm, 23 °C)

Equilibrio tra Forza Peso e

I)

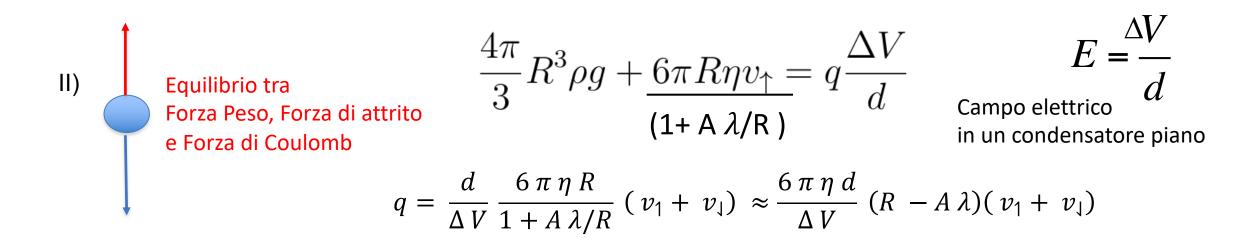
 \Rightarrow

Attrito Viscoso

mg=
$$rac{4\pi}{3}R^3
ho g=rac{6\pi R\eta v_{\downarrow}}{(1+A\,\lambda/R)}$$

$$(1 + A\lambda/R)^{1/2} R = \sqrt{\frac{9\eta}{2\rho g}} v_{\downarrow} \implies R \approx \sqrt{\frac{9\eta}{2\rho g}} v_{\downarrow} - \frac{A\lambda}{2\rho g}$$

Forza di attrito viscoso


mg

Velocità di deriva

Forza Peso

 $(1 + A \lambda/R)$

Modellizzazione - 2

Carica della gocciolina

$$q = \frac{6 \pi \eta d}{\Delta V} \left(\sqrt{\frac{9 \eta}{2 \rho g}} v_{\downarrow} - \frac{3}{2} A \lambda \right) (v_{\uparrow} + v_{\downarrow})$$

Procedura sperimentale - 1

- Agendo sulla pompetta si immettono delle goccioline d'olio tra le armature del condensatore piano, contenuto all'interno di una scatola, attraverso due appositi forellini.
- Alcune goccioline si caricano elettricamente per strofinio con l'aria (con carica **q**).
- Si controllano solo le cariche che si dirigono verso l'alto sotto l'azione del campo elettrico (V >0), quindi contro il campo gravitazionale. La polarità delle armature ci dice che si tratta di cariche negative.

Dobbiamo misurare :

- La d.d.p. V dal Voltmetro dell'alimentatore
- Le velocità di deriva v ↓ e v↑ da misure di
 intervallo spaziale s prefissato sul micrometro
 - > il tempo t necessario per percorrerlo con un cronometro

Procedura sperimentale -2

- I. Si fissi il potenziale al valore di fondo scala
- II. Si individui una goccia che «salga» e, agendo sul potenziometro, la si fermi in una posizione di riferimento.
- III. Si scelga un traguardo a distanza *s-su*. Si registri *s-su*.
- IV. Si porti il potenziale ad un valore più alto e si faccia partire il cronometro: si registri il potenziale V.
- V. Si segua la particella fino al raggiungimento del traguardo e si blocchi il cronometro. Si registri il tempo t-su misurato dal cronometro (nel caso di video l'intervallo tra due fotogrammi è dt = 1/25 sec)
- VI. Si abbassi il potenziale fino a fermare la gocciolina
- VII. Si scelga un traguardo a distanza *s-giù*. Si registri *s-giù*.
- VIII. Si ponga V=0 e si faccia partire il cronometro
- IX. Si segua la particella fino al raggiungimento del traguardo e si blocchi il cronometro. Si registri il tempo t-giù misurato dal cronometro
- X. Riportare di volta in volta gli errori di misura

Elaborazione dei Dati

• Preparare una tabella con i dati misurati

Parametri	Parametri	D(Parametri)	Dr(Parametri	v	DV	DrV	s-su	D(s-su)	Dr(s-su)	t-su	D(t-su)	Dr(t-su)	s-giù	D(s-giù)	Dr(s-giù)	t-giù	D(t-giù)	Dr(t-giù)
Т (К)	296		2 0,00	7 Volt	Volt		10^-3 m	10^-3 m		sec	sec		10^-3 m	10^-3 m		sec	sec	
rho (kg/m^3)	0,8722	0,00	1 0,00	1 60	0	2 0,00	3 :	2 0,2	5 0,12	5 15,4	41 0,	1 0,0	1	2 0,2	5 0,1	3 13,11	. 0	,1 0,0
eta (10^-5 Pa s)	1,8271	0,00	1 0,00	1 60	0	2 0,00	3 :	1 0,2	.5 0,2	5 33,2	25 0,	1 0,0	0	1 0,2	5 0,2	5 7,7	, O	,1 0,0
g (m/sec^2)	9,80247	0,0000	1 0,000	0 60	0	2 0,00	3 :	1 0,2	.5 0,2	5 4,2	28 0,	1 0,0	2	1 0,2	5 0,2	5 21,42	2 0	,1 0,0
A	0,817	0,00	1 0,00	1 60	0	2 0,00	3 :	1 0,2	5 0,2	5 16,2	25 0,	1 0,0	1	1 0,2	5 0,2	5 8,51	. 0	,1 0,0

$$v_{\uparrow} = s_{\uparrow}/t_{\uparrow}$$
 e $v_{\downarrow} = s_{\downarrow}/t$

\mathbf{v}	T				
	v-su	Dr(vu-su)	v-giù	Dr(v-giù)	
	10^-3 m/sec		,		
	10 ²² -5 mysec		m/sec		
	0,191	0,11	0,19	95	0,17

• Calcolare il raggio della goccia R e q

R nudo		Cunningham	R corretto	Dr(R)	D (Rcorretto)	q	Dr(q)	D(q)	q/e
10^-6 m		10^-6 m	10^-6 m		10^-6 m	10^-19 C		10^-19 C	
	0,383	0,057	0,440	0,058	0,026	2,75	0,21	0,58	1,7
	0,353	0,057	0,411	0,114	0,047	1,40	0,40	0,56	0,9
	0,212	0,057	0,269	0,101	0,027	1,16	0,39	0,45	0,7
	0,336	0,057	0,393	0,113	0,044	1,47	0,39	0,58	0,9

Studio delle incertezze

• Le principali fonti di incertezza derivano dalle misure di

s e **t**

$$\frac{\Delta v}{v} = \frac{\Delta s}{s} + \frac{\Delta t}{t}$$

- Altre fonti di incertezza rilevanti riguardano:
 - Dipendenza dei valori di η e ρ dalla temperatura
 - Correzione da slittamento


$$\frac{\Delta R}{R} = \frac{\Delta Rnudo}{Cunn.+R_{nudo}}, \quad \frac{\Delta Rnudo}{R_{nudo}} = \frac{1}{2} \left(\frac{\Delta \eta}{\eta} + \frac{\Delta \rho}{\rho} + \frac{\Delta v_{\downarrow}}{v_{\downarrow}} \right)$$

•
$$\frac{\Delta q}{q} = \frac{\Delta d}{d} + \frac{\Delta V}{V} + \frac{\Delta R}{R} + \frac{\Delta (v_{\downarrow} + v_{\uparrow})}{v_{\downarrow} + v_{\uparrow}}$$

• Si stimi l'impatto di tali incertezze sulla misura finale

Rapporto carica misurata/Valore di e tabulato

elocità v	↓ Velocità v	Raggio atti	Raggio atte rito corretto	rito Carica	Rapporto con e CODATA		
	VS	r0	rl c		n	eta	А
3,34E-05	9,28E-05	9,42979E-07	8,71267E-07	3,46043E-19	2,162767205	1,82E-05	0,817
5,35E-05	4,04E-05	6,22285E-07	5,53277E-07	1,56191E-19	0,976192147		
3,25E-05	9,46E-05	9,52335E-07	8,80569E-07	3,52648E-19	2,204050894		
1,44E-04	7,02E-05	8,20464E-07	7,49557E-07	4,98937E-19	3,118359222		
6,80E-05	9,68E-05	9,63442E-07	8,91614E-07	4,63599E-19	2,897491867		
1,12E-04	7,44E-05	8,44698E-07	7,73615E-07	4,49463E-19	2,809144224		
5,34E-05	3,97E-05	6,17025E-07	5,48083E-07	1,53227E-19	0,957670674		
8,47E-05	1,19E-04	1,06979E-06	9,9743E-07	6,47576E-19	4,047352208		
2,25E-05	1,23E-04	1,0858E-06	1,01337E-06	4,697E-19	2,935622046		
4,99E-05	1,34E-04	1,13416E-06	1,06152E-06	6,24433E-19	3,902707302		
5,07E-05	3,76E-05	6,00094E-07	5,31367E-07	1,40314E-19	0,876963184		
5,44E-05	3,62E-05	5,88725E-07	5,20151E-07	1,40576E-19	0,878601625		
5,39E-05	4,09E-05	6,25817E-07	5,56766E-07	1,58788E-19	0,992426937		
5,66E-05	4,16E-05	6,31611E-07	5,62489E-07	1,66468E-19	1,04042358		
1,97E-05	1,42E-04	1,16624E-06	1,09347E-06	5,65849E-19	3,536556831		
3,35E-05	9,20E-05	9,38956E-07	8,67267E-07	3,4255E-19	2,140936767		
4,66E-05	5,26E-05	7,10324E-07	6,40354E-07	1,94326E-19	1,214534677		
8,38E-05	5,47E-05	7,23824E-07	6,53726E-07	2,77367E-19	1,733540786		
6,86E-05	9,44E-05	9,51026E-07	8,79267E-07	4,51568E-19	2,822300143		
6,65E-05	3,45E-04	1,81716E-06	1,74272E-06	2,35096E-18	14,69352918		
6,23E-05	3,15E-05	5,49308E-07	4,81302E-07	1,33233E-19	0,832705288		
3,45E-05	1,10E-04	1,02869E-06	9,56516E-07	4,39663E-19	2,747892437		

Rappresentazione Grafica dei Dati

Rappresentazione per Classi

	q x 10^19	9 q>	De(q) >	q-De(q)	q - De(q)	<q></q>	sigma	qi-q1	n1	(qi-q1)/n1	De1
	4,88	3,29	0,54	2,75	3 <i>,</i> 83						
	5,74	3,43	0,56	2,87	3,99						
	10,95	3,77	0,57	3,20	4,35	3,77	0,41				
	6,48	4,13	0,68	3,45	4,81						
	5,00	4,21	0,47	3,73	4,68			1,05	1,00	1,05	0,72
	8,14	4,36	0,63	3,73	5 <i>,</i> 00						
	13,18	4,88	0,56	4,32	5,44	4,82	0,31				
	5,04	5,00	0,68	4,32	5,67						
	16,21	5,04	1,09	3,94	6,13						
	3,29	5,40	0,53	4,86	5,93			2,01	2,00	1,01	0,36
	6,00	5,48	0,91	4,57	6,39						
	5,58	5,58	0,93	4,65	6,52	5,78	0,40				
	4,13	5,74	0,76	4,97	6,50						
	3,43	6,00	0,99	5,01	6,99			6,22	4,00	1,55	0,10
	10,87	6,48	0,87	5,61	7,36						
	15,35	8,14	1,78	6,36	9,92						
	5,48	10,87	1,85	9,02	12,72	9,99	1,60				
	5,40	10,95	1,90	9,05	12,85			11,15	6,00	1,86	0,53
	3,77	13,18	2,27	10,91	15,45						
	4,21	15,35	1,13	14,22	16,49	14,91	1,56	Sti	ma intei	ro	
	4,36	16,21	2,23	13,98	18,44				Stir	ma carica fond	l. /errore
NB: Esempio basato su										е	De
una serie di misure		q in ordine		Intervalli di v	alori	Valori m		Differenze			
diversa dalla precedent	е	crescente per le q				nelle classi con la classe 1			1	1,41	0,23
			Inc	dividuazione	delle classi					Valori medi	Errore
										delle stime s	ulla media

In questo esempio, l'errore stimato della misura è del 23%

Test del χ^2

E' un metodo statistico che consente di verificare se due grandezze , diciamo x e y, siano legate da una certa ipotetica relazione y = f(x), supponendo di aver misurato N coppie (x_i, y_i) , con N molto grande, e supponendo che le cause di errore nelle misure siano molto grandi e distribuite secondo la legge di Gauss (distribuzione Normale).

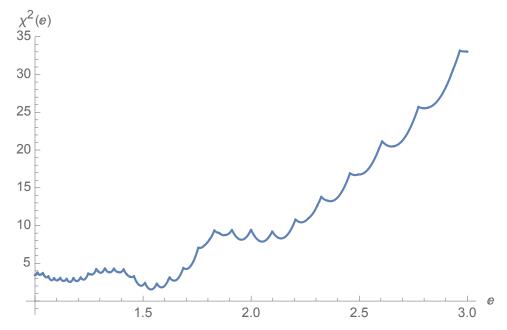
Se il valore atteso di y_i sia f (x_i), si potrebbe *verificare* la bontà di questa ipotesi CALCOLANDO che la quantità

$$\chi^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - f(x_i))^2 / \sigma_i^2 \le 1$$

dove σ i sono le deviazioni standard della misura x i.

Nel caso della misura della carica fondamentale la quantità misurata è $x_i = q_i/e$, dove e è il supposto valore vero della carica fondamentale. In tal caso f (x_i) deve essere un numero intero, corrispondente a yi. Pertanto, bisogna $\chi^{2}(e) = \frac{1}{N-1} \sum_{i=1}^{N} ([q_{i}/e] - q_{i}/e)^{2} / (\Delta q_{i}/e)^{2} \le 1$ verificare che

per un opportuno valore e, che ora è inteso variabile.


Applicatione del test del χ^2

Esempio :

Cariche misurate

{6.48, 6.24, 5.66, 4.99, 4.7, 4.64, 4.52, 4.49, 4.4, 3.53, 3.46, 3, 43, 2.77, 1.94, 1.66, 1.59, 1.56, 1.53, 1.41, 1.4, 1.33} x 10⁻¹⁹ C

Deviazione standard 0.20 x 10⁻¹⁹ C (uniforme per tutti i valori)

Come si vede dal grafico, il valore che minimizza χ^2 è $e = 1.51 \times 10^{-19} C \pm 0.20 \times 10^{-19} C$