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Abstract

We investigate the effects of the pairing in spherical nuclei. We use the same finite-range in-

teraction of Gogny type in the three steps of our approach, Hartree-Fock, Bardeen, Cooper and

Schrieffer, and quasi-particle random phase approximation calculations. We study electric and

magnetic dipole, quadrupole and octupole excitations in oxygen and calcium isotopes and also in

isotones with 20 neutrons. We investigate the pairing effects on single particle energies and occupa-

tion probabilities, on the excitation energies, B-values and collectivity of low-lying states including

the isoscalar electric dipole and the magnetic dipole excitations, and also the giant resonances.

The inclusion of the pairing increases the values of the excitation energies in all the cases we have

studied. In general, the effects of the pairing are too small to remarkably improve the agreement

with the available experimental data.

PACS numbers: 21.60.Jz; 25.40.Kv
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I. INTRODUCTION

In atomic nuclei, pairing is the most striking phenomenon whose description requires an

extension of the extreme mean-field model. For example, the evidence that the angular

momentum of each even-even nucleus is zero, without any exception, and that the angular

momentum of each odd-even nucleus coincides with that of the single particle (s.p.) level

occupied by the unpaired nucleon can be explained only by assuming the presence between

like-nucleons of an attractive two-body interaction, therefore, by definition, not described

by the one-body mean-field potential.

Pairing phenomena have been described by extending to the nuclear case the theory of

Bardeen, Cooper and Schrieffer (BCS) originally formulated to study superconductivity in

metals [1]. The BCS theory requires two inputs, the s.p. energies and wave functions, in

our case generated by Hartree-Fock (HF) calculations, and the pairing interaction. This

theory, usually applied to describe the ground state properties of even-even open shell nu-

clei, provides the occupation probabilities of the s.p. levels, and the quasi-particle energies.

An analogous description of open shell nuclei is also given by the Hartree-Fock-Bogolioubov

(HFB) theory which is formulated to use a single input, the effective nucleon-nucleon inter-

action, to generate s.p. wave functions, occupation probabilities, and quasi-particle energies.

The description of the excited states requires to go beyond the HF+BCS or the HFB

frameworks which are, both, unable to consider collective effects. For this reason an exten-

sion of the Random Phase Approximation (RPA) theory, called quasi-particle RPA (QRPA)

[2], built to handle pairing and partial occupation probabilities of the s.p. levels, is commonly

used.

In these last few years we have developed a model which treats the pairing by using a

set of s.p. levels generated by a HF calculation [3–5]. In this approach we use the same

finite-range interaction as nucleon-nucleon force in the HF calculations and also as a pairing

force in the BCS approach. In the works quoted above we tested our results against those

obtained in HFB calculations, and we found good agreement between the two approaches.

Specifically, the two types of calculations agree very well for those quantities which are used

in QRPA calculations, i.e. occupation probabilities and quasi-particle energies.

Encouraged by this result we constructed a QRPA on top of our HF+BCS approach by

using the same finite-range interaction. We have now the possibility of describing ground
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and excited states of spherical open-shell nuclei by using an approach which requires a single

input, the nucleon-nucleon finite-range interaction. As already pointed out in the seminal

paper of Dechargé and Gogny [6], the use of finite-range interaction provides stability of the

pairing results against the size of the s.p. configuration space. For this reason, once the

nucleon-nucleon interaction has been chosen, our calculations do not require any other input

parameter related to the physics of the problem.

In the literature one can find various types of QRPA calculations, as indicated, for exam-

ple, by the review article of Ref. [7]. Without the ambition of being exhaustive in quoting

the works done in this field, we classify them in three categories. There are calculations

where the s.p. wave functions and energies are generated by a mean-field potential, for ex-

ample of Woods-Saxon or harmonic oscillator type. The BCS equations are solved by using

a phenomenological pairing interaction whose parameters are selected to reproduce some

properties of the nuclei investigated. Usually, the same pairing interaction is also used in

QRPA calculations. In other types of calculations the interaction used in the HF procedure

is different from that used to evaluate the pairing. These are, for example, the calculations

carried out with the Skyrme interaction [8–12] whose zero-range character does not allow its

straightforward use in the pairing sector since the results strongly depend on the size of the

quasi-particle configuration space [6]. The last type of calculations use the same interaction

to generate s.p. levels, pairing and QRPA excitations. Our calculations, as well as those of

Refs. [13, 14], belong to this last category. There are also calculations carried out within the

relativistic framework that can be classified in an analogous way (see for example [15, 16].)

In the present paper we use our HF+BCS+QRPA approach to investigate the relevance

of the pairing in the different steps of the calculations. By switching on and off the various

terms of our equations we disentangle the pairing effects in the s.p. energies and occupation

probabilities, from those related to the QRPA approach.

Our article is structured as follows. In Sec. II we describe HF+BCS and QRPA approach.

The technical details of the calculations are given in Sec. III. In Sec. IV we show the results

obtained by using the D1M Gogny interaction [17]. Our calculations have been carried out

for a set of oxygen and calcium isotopes and an isotone chain composed by nuclei with 20

neutrons. We discuss results concerning positive and negative parity multipoles excitations

from the dipole to the octupole excitations. We analyze the pairing effects first on the

low-lying excitations and, later, on the giant resonances. The conclusions of our study are
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presented in Sec. V. Finally, in the Appendix A a detailed set of results regarding the

18O nucleus is presented, in order to discuss in detail the numerical convergence of our

calculations.

II. THE MODEL

The first step of our approach consists in the description of the nuclear ground state

within the HF+BCS framework. We first generate a set of s.p. wave functions in a spherical

basis by solving the HF equations. When the iterative method described in Ref. [18] has

reached convergence, we calculate the direct, Hartree, and exchange, Fock-Dirac, potentials

by using the s.p. wave functions below the Fermi level, and solve the integro-differential HF

equations to generate the s.p. wave functions above it. Each s.p. state |µmµ〉 ≡ |nµlµjµmµ〉
is characterized by the principal quantum number nµ, the orbital angular momentum lµ, the

total angular momentum jµ, and its z-axis projection mµ, and has a s.p. energy εµ that is

2jµ + 1 times degenerated.

The HF wave functions and energies are used as the starting point to solve the BCS

equations. From the solution of these equations, we obtain the Bogolioubov-Valatin v2
µ and

u2
µ coefficients, which are normalized such that u2

µ + v2
µ = 1. The occupation probability

of the |µ〉 s.p. state is v2
µ, while u2

µ is the probability of being empty. We consider only

spherical nuclei, therefore the BCS ground states are spherically symmetric and the vµ and

uµ coefficients are independent of mµ.

A quantity obtained in the BCS calculations and used in the QRPA is the quasi-particle

energy, defined as

Eµ ≡
√

(εµ − λ)2 + ∆2
µ , (1)

where λ is the chemical potential, which is calculated by using the expression

λ =

∑
µ

(2jµ + 1)

(
2v2

µ +
εµ
Eµ
− 1

)
∑
µ

(2jµ + 1)
1

Eµ

, (2)

and

∆µ = − 1√
2jµ + 1

∑
ν

√
2jν + 1uν vν 〈νν; 0|V |µµ; 0〉 (3)
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where the expression |αβ; 0〉 indicates the coupling of the |α〉 and |β〉 s.p. states to the total

angular momentum J = 0, and V represents the pairing interaction.

A QRPA excited state |k〉 of angular momentum J , third component M , parity Π, and

excitation energy ωk, is described as a combination of quasi-particle excitations on top of

the ground state |0〉:

|k〉 ≡ |JΠM ;ωk〉 =
∑
µ≤µ′

[
X

(k)
µµ′(J)A†µµ′(JM) + (−1)J+M+1 Y

(k)
µµ′ (J)Aµµ′(J −M)

]
|0〉 . (4)

In the above expression, the condition µ ≤ µ′ prevents the double counting of the quasi-

particle pairs. To simplify the writing we did not include the explicit dependence on the

parity Π = (−1)lµ + lµ′ . The QRPA amplitudes X and Y must verify the relation [19, 20]∑
µ≤µ′

{
[X

(k)
µµ′(J)]∗X

(k′)
µµ′ (J) − [Y

(k)
µµ′ (J)]∗ Y

(k′)
µµ′ (J)

}
= δkk′ (5)

obtained by imposing the orthonormality of the QRPA eigenstates, and by using the defini-

tion of the quasi-particle pair creation and annihilation operators

A†µµ′(JM) = Cµµ′(J)
∑

mµ,mµ′

〈jµmµ jµ′mµ′ |J M〉α†µmµ α
†
µ′mµ′

(6)

and

Aµµ′(JM) = Cµµ′(J)
∑

mµ,mµ′

〈jµmµ jµ′mµ′|J M〉αµmµ αµ′mµ′ , (7)

where

Cµµ′(J) =

√
1 + (−1)Jδµµ′

1 + δµµ′
. (8)

The quasi-particle creation, α†µmµ , and annihilation, αµmµ , operators are related to the

particle creation, c†µmµ , and annihilation, cµmµ , operators by means of the Bogolioubov-

Valatin transformation [19, 20]

α†µ±|mµ| = uµ c
†
µ±|mµ| ∓ vµ cµ∓|mµ| . (9)

By using standard techniques the QRPA secular equations can be written as [19, 20]: A(J) B(J)

−B∗(J) −A∗(J)

X(k)(J)

Y (k)(J)

 = ωk

X(k)(J)

Y (k)(J)

 . (10)
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The matrix elements of A and B are given by the expressions:

A[µµ′]J,[νν′]J = (Eµ + Eµ′) δµν δµ′ν′ (11)

+Cµµ′(J)Cνν′(J)
{
F (µµ′νν ′; J) (uµv̄µ′uν v̄ν′ + v̄ ↔ u)

− (−1)jν+jν′−J F (µµ′ν ′ν; J) (uµv̄µ′ v̄νuν′ + v̄ ↔ u)

+G(µµ′νν ′; J) (uµuµ′uνuν′ + v̄ ↔ u)
}

and

B[µµ′]J,[νν′]J = Cµµ′(J)Cνν′(J)
{
F (µµ′νν ′; J) (uµv̄µ′ v̄νuν′ + v̄ ↔ u)

− (−1)jν+jν′−J F (µµ′ν ′ν; J) (uµv̄µ′uν v̄ν′ + v̄ ↔ u)

−G(µµ′νν ′; J) (uµuµ′ v̄ν v̄ν′ + v̄ ↔ u)
}
. (12)

The secular QRPA equations are independent of the m quantum numbers because we are

considering spherical nuclei. In the previous equations, in order to simplify the writing, we

have introduced the symbol

v̄µ = (−1)lµ vµ . (13)

On the other hand, the F and G functions in Eqs. (11) and (12) contain the matrix elements

of the interaction; their expressions are:

F (µµ′νν ′; J) =
∑
K

(−1)j
′
µ+jν+K (2K + 1)

 jµ jµ′ J

jν jν′ K

 〈µν ′;K|V |µ′ν;K〉 (14)

and

G(µµ′νν ′; J) = 〈µµ′; J |V |νν ′; J〉 , (15)

where

〈µν ′; J |V |µ′ν; J〉 = 〈µν ′; J |V |µ′ν; J〉 − 〈µν ′; J |V |νµ′; J〉 (16)

is the antisymmetrized interaction matrix element.

The transition amplitudes induced by an external operator QT
J are calculated by using

the expression:

〈JΠ;ωk‖QT
J ‖0〉 =

∑
µ≤µ′

[uµ v̄µ′ + (−1)J v̄µ uµ′ ][
X

(k)
µµ′(J) 〈µ‖QT

J ‖µ′〉 + (−1)J+jµ−jµ′ Y
(k)
µµ′ (J) 〈µ′‖QT

J ‖µ〉
]
, (17)
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where the double bar indicates the reduced matrix element as defined by the Wigner-Eckart

theorem [21].

In absence of pairing, Eqs. (11) and (12) do not reproduce the expressions of the usual

RPA matrices [19, 20]. In this limit, the F terms (14) are the traditional transition matrix

elements of the RPA. However, the G terms in Eq. (15), that do not have counterpart in

the RPA equations, do not vanish, and they are simply decoupled from the F terms.

In BCS the number of the particles composing the system is conserved only on average.

The QRPA theory is based on the BCS ground state, which is not an eigenstate of the

particle number, and the corresponding solutions include terms related to nuclear systems

with A ± 2 particles. A clear separation of these spurious components requires the use of

projection techniques on the good number of particles (see for example [22–24]).

III. DETAILS OF THE CALCULATIONS

Our formulation of the HF+BCS+QRPA equations can handle any local finite-range

interaction that may, eventually, include density dependent terms. Among the various effec-

tive interactions available in the literature, we have chosen forces of Gogny type [25], which

have been widely used and tested. We express the effective interaction as a sum of central,

VC, spin-orbit, VSO, and density dependent, VDD, terms:

V (1, 2) = VC(1, 2) + VSO(1, 2) + VDD(1, 2) . (18)

The central term depends on the spin and the isospin of the two interacting nucleons and has

a finite range, the other two terms are of zero-range type. In HF calculations, in addition

to the force V , also the Coulomb interaction has been considered.

In the BCS calculations the spin-orbit, VSO(1, 2), and the density-dependent, VDD(1, 2),

terms do not contribute, the former one because the interacting pair is coupled to zero

angular momentum, and the latter one by construction in Gogny type interactions [25].

In our BCS calculations we use only the VC term and we do not consider the Coulomb

term. This is the approach commonly adopted in HFB calculations when Gogny type forces

are used [6, 26, 27], and it is justified by the small effects produced by the Coulomb force.

Specifically, for the nuclei we investigate in this article, we point out that there is no Coulomb

interaction in the pairing sector for the oxygen and calcium isotopes where the pairing force
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is active only between neutrons. For the N = 20 isotones we have evaluated the effect of

the Coulomb force on the binding energies and we found relative differences between results

with and without Coulomb forces of few parts on a thousand.

The QRPA calculations have been carried out by considering the complete Gogny inter-

action (18) plus the Coulomb force, even if we knew that the effects of the latter one and of

the spin-orbit interaction are negligible [28].

In the next section we present the results obtained by using a parameterization of the

Gogny interaction called D1M [17]. We have carried out our calculations also with the well

known and widely used D1S parameterization [26]. We did not find significant differences

between the results obtained with the two interactions in what refers to the pairing effects.

Therefore, we show only the D1M results.

We solve the HF equations in r-space by imposing bound boundary conditions at the

edge of the integration box [18, 29, 30]. In this manner all the s.p. states forming the config-

uration space are bound, even those with positive energy. The size of the s.p. configuration

space is large enough to ensure the stability of the BCS results. The finite-range of the

interactions automatically generates the convergence of the calculations without additional

renormalisation parameters as it is required, for example, when Skyrme-like interactions are

used [31]. In our BCS calculations we have considered all the s.p. states with energy up

to 10 MeV. This configuration space, together with the Gogny interactions, provides the

stability of the BCS ground-state energy within the keV range.

From the numerical point of view, the critical parameter in the QRPA calculations is

the size of the s.p. configuration space which is strictly related to the dimension of the

integration box. As already pointed out, in our calculations the continuum part of the s.p.

spectrum is described in terms of bound wave functions with positive energy. The dimension

of the integration box determines the s.p. energies and wave functions in the continuum.

This procedure does not consider all the effects produced by a correct treatment of the

continuum part of the s.p. configuration space. In Ref. [32] we have investigated these

effects in RPA calculations. The effects in the pairing sector have been studied, for example

in Ref. [33].

Our experience with continuum RPA calculations indicates that the observables we have

investigated in the present work are scarcely sensitive to the exact treatment of the contin-

uum s.p. spectrum. In analogy to what we have done in Ref. [28], we have chosen the sizes
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of the s.p. configuration spaces and the boxes dimensions by controlling that the centroid

energies of the giant dipole resonances of closed shell nuclei do not change by more than 0.5

MeV when either the box size or the maximum value of the s.p. energy are increased. By

using the values determined in this manner we obtain stability of our results. The number

of the quasi-particle pairs depends on the size of the s.p. space and defines the dimensions

of the QRPA secular matrix (10) to be diagonalized.

This choice of the configuration space sets below zero the spurious 0+ excited state due to

the breaking of the nucleon number conservation symmetry [10]. The case of the spurious 1−

state due to the breaking of the translational invariance will be discussed in Sec. IV B. By

using the 18O nucleus as test example, we give in Appendix A a more detailed presentation

of our method to determine the size of the configuration space.

IV. RESULTS

In this section we present a selection of the results of our calculations with the aim of

studying the role of the pairing force in the excitation spectrum of spherical open shell

nuclei as predicted by QRPA. Our investigation strategy consisted in switching on and off

the pairing force in the various terms of the equations previously presented, therefore three

different types of calculations have been carried out. In those labelled QRPA all the pairing

terms are active, while we have switched off the G terms in Eqs. (11) and (12) in those

calculations we have called QRPA(F). In both type of calculations the s.p. basis is that

provided by the HF+BCS approach. This means that in QRPA(F) the pairing is present

only in the s.p. input where energies, and occupation probabilities differ from those obtained

in a pure HF calculation. In the third kind of calculation, which we call RPA, the s.p. input

is provided by the HF, and the excited states are obtained by solving Eqs. (11) and (12)

without the G terms. In this case, we indicate as (vHF
µ )2 the occupation probability of the

s.p. state |µ〉. Its value is 1 or 0 except for the only partially occupied s.p. state in each one

of the open-shell nuclei investigated.

In this article, we present the results obtained for 6 oxygen isotopes, from A = 16 up

to A = 26, 12 calcium isotopes, from A = 40 up to A = 62, and a chain of 9 isotones

with N = 20, from 30Ne to 46Fe. All the nuclei we have considered are spherical, magic or

semi-magic.
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A. Single particle energies and occupation probabilities

We have already discussed in other publications the effect of the pairing on the ground-

state properties of spherical semi-magic nuclei, which we describe with our HF+BCS ap-

proach [3–5]. Here we address our attention on how the pairing modifies the occupation

numbers and the energies of the s.p. states that are input of the QRPA calculations. For

this purpose we have considered the quantities

δvµ =
∣∣v2
µ − (vHF

µ )2
∣∣ (19)

and

δεµ =

∣∣∣∣ ε̃µ − εµ
ε̃µ + εµ

∣∣∣∣ , (20)

where, in analogy with the HF s.p. energies εµ, we have introduced the BCS s.p. energies

ε̃µ defined as

ε̃µ = ±Eµ + λ , (21)

with Eµ indicating the quasi-particle energy defined in Eq. (1). Here the plus sign is taken

for s.p. states where εµ > λ, while the minus sign corresponds to those s.p. states with

εµ < λ.

We have found that the values δvµ and δεµ obtained for each individual nucleus are

completely uncorrelated, with Pearson correlation coefficients well below 0.1 in all cases.

The same happens for

∆v =
∑
µ

δvµ (22)

and

∆ε =
∑
µ

δεµ (23)

calculated for each of the nuclei analyzed. For these quantities, the Pearson correlation

coefficient is smaller than 0.04. This scarce correlation is evident in Fig. 1 where we show

the values ∆v and ∆ε for all the nuclei we have investigated. The zeros in both panels of

the figure indicate the closed-shell nuclei, which are 16O and 24O for Z = 8, 40Ca, 48Ca,

52Ca, and 60Ca for Z = 20 and 34Si and, again, 40Ca for N = 20. In these nuclei the pairing

is irrelevant, the s.p. states are fully occupied, or completely empty, and ε̃µ ∼ εµ. A clear

example of the poor correlation between ∆v and ∆ε is the case of the 22O nucleus where
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∆v shows the largest value of the isotope chain while that of ∆ε is the smallest one of the

semi-magic nuclei considered. The contrary happens in 26O.

In panel (a) we notice that the effects of the pairing on ∆v are similar in all the nuclei

studied except in 54Ca, 56Ca, 36S and 38Ar where they are notably larger. This is due to

the fact that in these nuclei the HF energy gaps between the last occupied and the first

(partially) unoccupied s.p. state are small and this makes the pairing to be more relevant.

In Table I we present, for these four nuclei, the HF and BCS occupation probabilities and

energies for those s.p. states with v2
µ > 10−3. The table shows that ε̃µ < εµ for those quasi-

particle states where εµ < λ, while the contrary happens if εµ > λ. This is a consequence of

the definition of the quasi-particle energy Eµ, see Eq. (1), where the pairing contribution ∆µ

is present in quadratic form. For this reason, the inclusion of the pairing always increases

the Eµ + Eµ′ factor of the A term of the QRPA secular equation (11).

The relatively large values of ∆ε for the 26O and 62Ca nuclei shown in the panel (b) of

Fig. 1 are generated by the smallness of the denominator in Eq. (20). In these nuclei, the

s.p. energies of the partially occupied (1d3/2)ν and (1g9/2)ν are close to 0, in absolute value,

in both HF and HF+BCS cases, therefore, the values of the denominators of the δεµ factors

become comparatively smaller than those of the other nuclei.

B. Excited state energies

After having clarified the effect of the pairing on the input of our calculations, we present

now the QRPA results. We first discuss the low-lying excitations. We show in Fig. 2 the

excitation energies, ω, of the main 1−, 2+ and 3− excited states below the giant resonance

region obtained in the RPA calculations for the nuclei we have considered. Similar calcula-

tions have been carried out for 1+, 2− and 3+ excitations. In the figure, the horizontal black

lines represent the RPA results, while the solid circles and the triangles are those obtained

in QRPA(F) and QRPA calculations, respectively. In panel (c), the open squares indicate

the experimental energies of some 3− excitations taken from Ref. [34].

In the upper panel of Fig. 2, where the 1− results are shown, all the nuclei present a first

low-lying excitation at about 2− 3 MeV. This is a spurious state generated by the breaking

of the translational invariance of the QRPA equations [19]. The presence of this state in the

excitation spectrum is strictly related to the use of a discretized and truncated quasi-particle
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configuration space. As we have tested in RPA calculations, which have analogous problems,

a proper treatment of the continuum s.p. space set to zero this state [32]. For the purposes

of the present work, since this state is easily identifiable and well isolated from the other

ones, we have eliminated it by hand as it has been done in Ref. [35], and in the following

discussion is not considered. A more detailed discussion about the presence of the spurious

state is done in the appendix A.

The first observation about Fig. 2 is that the differences between the results generated by

the various terms containing the pairing force are relatively small as compared to the values

of the corresponding excitation energies. To have a clearer view of these energy differences

we show in Fig. 3 ωQRPA(F) − ωRPA (solid circles) and ωQRPA − ωRPA (triangles) for the

same three multipolarities. It is evident that in the great majority of the cases considered,

the QRPA(F) and QRPA excitation energies are larger than the energies obtained in RPA

calculations. This is, mainly, a consequence of the increase of Eµ+Eµ′ , previously discussed.

A more compact information about this result is given in Table II where we show, for

each of the excitation multipoles studied, the average values of the differences shown in Fig.

3. In this table, also the results obtained for the unnatural parity excitations 1+, 2− and

3+ are given. All the average values of ωQRPA(F) − ωRPA and ωQRPA − ωRPA are positive. As

seen in Fig. 3 we have found maximum differences of about 2 MeV for 1−, 3 MeV for 2+ and

1.5 MeV for 3−, while the averages are 1 MeV at most. The table shows that the values of

the standard deviations are rather large, comparable with the values of the averages.

Since the s.p. input in QRPA and QRPA(F) calculations is the same, the differences

between the energies ωQRPA and ωQRPA(F) are only due to the presence of the pairing force

in the G terms of the QRPA. The results of Figs. 2 and 3 indicate that, in general, ωQRPA(F)

is larger than ωQRPA. The average values of the differences ωQRPA−ωQRPA(F) given in Table

II summarize this result. These values are all negative and remarkably smaller than the

respective mean of the differences with the RPA energies. The s.p. input containing the

pairing, HF+BCS, enhances the excitation energy values, but the presence of the pairing in

the QRPA calculations slightly reduces this effect.

It is also worth remarking that the average energy differences, as well as the corresponding

standard deviations, shown in Table II, are three times larger for positive parity excitations

than for the negative ones. This is due to the fact that, in the first case, the transitions

between spin-orbit partner levels are allowed. As some of these partner states are close to
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the Fermi surface, the pairing produces relatively large effects.

C. Collectivity of the excited states

We have investigated how the pairing modifies the structure of the wave function of the

excited states and, specifically, its degree of collectivity. To do this we have chosen quasi-

particle pair configurations (µµ′) nearby the Fermi level where pairing effects are more

important. In closed shell nuclei we have considered the pair formed by the HF s.p. states

just below and above the Fermi surface. In open shell nuclei we studied the pairs involving

the HF partially occupied s.p. state and either the first empty or the last fully occupied

level. Neutron (proton) quasi-particle pair configurations were selected for Z = 8 and Z = 20

(N = 20) chains. For each nucleus and multipolarity JΠ we have selected the excited states

having as dominant configuration the quasi-particle pairs chosen and we have calculated the

quantity

W(µµ′; JΠ) = [Xµµ′(J
Π)]∗Xµµ′(J

Π) − [Yµµ′(J
Π)]∗ Yµµ′(J

Π) . (24)

Here Xµµ′ and Yµµ′ are the (Q)RPA amplitudes of the quasi-particle pair, normalized as

indicated in Eq. (5). We have followed the evolution of this quantity in the three types

of calculations performed. Obviously, if W(µµ′; JΠ) ' 1 the excited state is almost a pure

quasi-particle pair configuration, while if the value is remarkably smaller than 1, then,

contributions of other pairs appear and the nuclear excited state is more collective.

The most clear situations are those obtained for the 2+ and 2− excitations whose results

are shown in Table III. The values of W(µµ′; JΠ) in RPA results for the 2+ excitations are

very close to 1, and the inclusion of the pairing diminishes their values. This indicates that

the pairing generates more collectivity. The opposite effect is present in the 2− excitation.

For other multipoles the situation is more confused and each state has to be investigated

individually.

D. Pigmy dipole resonance

We have analyzed the low-lying isoscalar 1− excitation known in the literature as pigmy

dipole resonance (PDR). Our results show the features already identified in RPA [35] and

QRPA [14] calculations with Gogny interactions: the strength of the PDR increases with
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the neutron excess. On the other hand, the comparison between the results obtained with

the three different type of calculations carried out in the present work indicates that the

pairing effects are rather small.

In Fig. 4 we present the results obtained for the 20O and 50Ca nuclei, where the pairing

generates the largest energy differences between the PDR states. The energy distributions

of the B(E1) values are shown in the panels (a) and (d), the proton transition densities in

the panels (b) and (e), and the neutron transition densities in the panels (c) and (f). The

only remarkable effect of the pairing is in the neutron transition density of 20O, panel (c).

In this case, the PDR excitation is dominated by the (1f7/2, 1d5/2)ν quasi-particle pair. In

the RPA case there are also remarkable contributions of other configurations, (1f5/2, 1d5/2)ν ,

(2f7/2, 1d5/2)ν and (1d5/2, 1p3/2)ν , but in QRPA only the latter configuration contaminates

the dominant one. In any case, the global effect of the pairing is rather small.

E. Conjugate configurations

We have already pointed out that in Fig. 2 we have considered those low-lying states

which are well identified in RPA and the corresponding states obtained in QRPA(F) and

QRPA calculations. In both QRPA(F) and QRPA, other low-energy excited states appear

dominated by a quasi-particle configuration implying a s.p. transition between a partially

occupied state and itself. We call conjugate these configurations. They play an important

role in these calculations where the pairing interaction is active. However, in RPA they

generate spurious excited states with energy nearby zero, and give a very small contribution

in the wave functions of the other excited states.

In Fig. 5 we present energies (left panels) and B(E2) values (right panels) of the lowest

QRPA(F)and QRPA 2+ states, most of them dominated by conjugate configurations. Our

results, indicated by the solid circles and triangles, are compared to the experimental data

(solid squares), obtained from Ref. [36], with the exception of the B(E2) value of 30Ne

which was measured more recently [9]. As first general remark, we observe that all the

QRPA(F)energies are larger than those obtained in QRPA calculations. This is the same

trend seen in Fig. 2.

In our calculations, the 2+ excited states of the oxygen isotopes, whose energies andB(E2)

values are shown in panels (a) and (d), are all dominated by the conjugate (1d5/2, 1d5/2)ν

15



configuration, with the exception of the 24O nucleus. The neutron 1d5/2 state is completely

full in 22O and 24O, but while in the first nucleus the (2s1/2, 1d5/2)ν configuration competes

with the dominant conjugate one, in the second nucleus the 2+ excitation is dominated by

the (1d3/2, 2s1/2)ν configuration. The results of Ref. [13] are closer to our QRPA(F) energies

than to those of the QRPA.

In the two panels, the open squares represent the results of the non-relativistic

HFB+QRPA calculations of Ref. [8], which have been carried out by using the Skyrme

interaction SLy4 [37] and a zero-range density-dependent interaction pairing force. The

agreement between our results and those of Ref. [8] is good, certainly more satisfactory

than the description of the experimental data. In this respect we do not observe any general

trend and each case should be separately discussed.

We found that also the results of the relativistic calculations of Refs. [15, 16] show

behaviors analogous to ours. The relativistic approach without dynamical pairing, which

should correspond to our QRPA(F), generates excitation energies larger than those of the

RPA. The inclusion of the pairing in the full relativistic QRPA reduces the values of these

energies, as it happens in our calculations.

The results regarding the calcium isotopes are shown in the panels (b) and (e) of Fig.

5. Up to the 48Ca isotope, the 2+ states are also dominated by a conjugate configuration,

specifically the (1f7/2, 1f7/2)ν . In 48Ca the neutron 1f7/2 state is fully occupied and the

excited state is dominated by the (2p3/2, 1f7/2)ν pair. In the case of the heavier 50Ca isotope,

the (2p3/2, 2p3/2)ν conjugate configuration gives the main contribution to the lowest 2+ state.

On the other hand, in 52Ca, where the 2p3/2 neutron state is fully occupied, the excited state

is dominated by the (2p1/2, 2p3/2)ν pair.

In panel (b) and (e) the open squares and circles represent the results of Refs. [11] and

[12] respectively. The former have been obtained in HFB+QRPA non-relativistic calcula-

tions which used the SkM* parameterization [38] of the Skyrme interaction and a separable

Gaussian interaction as pairing force. The calculations of Ref. [12] considered the SLy5

Skyrme interaction [37] and a zero-range density-dependent pairing force.

Our results are in agreement with those of Ref. [11] in both energy and B(E2) values,

with the exception of the 40Ca nucleus which we shall discuss below. We predict excitation

energies larger than those experimentally found, except for 52Ca and 54Ca, and B(E2) values

smaller than the observed ones, except for 48Ca. The calculations of Ref. [12] generate
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smaller values of the excitation energies and very large B(E2) values, even larger than those

measured.

The 2+ state of 40Ca in Ref. [11] is found at an energy much lower than that we have

obtained (see panel (b) of Fig. 5), but the authors of this article suggest the possibility that

this 2+ is a spurious state with a wrong number of nucleons.

The results found for the N = 20 isotones are shown in the panels (e) and (f), where

the open squares represent the values calculated in Ref. [9] by using the SkM* interaction

[38] plus a zero-range density-dependent interaction pairing force. The lowest 2+ states of

the 34Si, 36S and 38Ar nuclei are dominated by the (2s1/2, 1d5/2)π, the (1d3/2, 2s1/2)π and the

conjugate (1d3/2, 1d3/2)π pairs, respectively. For these nuclei, our results describe reasonably

well the experimental data. However, the discrepancies for the 30Ne and 32Mg excitations,

dominated by the conjugate (1d5/2, 1d5/2)π pair, are remarkable. By using a strong pairing

interaction the results of Ref. [9] are able to reproduce the small experimental energies and

the large B(E2) values.

F. Magnetic dipole excitation

In the 1+ excitations, the main part of the strength is concentrated in one excited state,

which is dominated by a single quasi-particle pair. These dominant quasi-particle configura-

tions are well identified, they are the (1d3/2, 1d5/2)ν for the oxygen isotopes, the (1f5/2, 1f7/2)ν

for the calcium chain, and the (1d3/2, 1d5/2)π for the N = 20 isotones up to Z = 20, and the

(1f5/2, 1f7/2)π for the heavier ones. We show in panel (a) of Fig. 6 the energies of the 1+

states with the largest B(M1) values for all the nuclei we have considered. The meaning

of the symbols is the same as in Fig. 2. The available experimental values, taken from the

compilation of Ref. [34], are shown by the open squares. The effects of the pairing on these

energy values are certainly smaller than the differences with the experimental data.

In the panel (b) of Fig. 6 we represent the B(M1) values of these states. We observe

that for each group of nuclei they increase up to a maximum corresponding to the doubly

magic nucleus, and then they decrease. This behavior is related to the occupation v2 of the

states involved. If we consider, for example, the calcium isotope chain, in the 40Ca nucleus

the two s.p. states forming the (1f5/2, 1f7/2)ν configuration are empty. The neutron 1f7/2

state is partially occupied in 42Ca and its occupation progressively increases until it reaches
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full occupancy in 48Ca, where B(M1) is maximum. In all these isotopes the neutron 1f5/2

state is empty. In 50Ca, 52Ca, and 54Ca the B(M1) values remain almost stable because, in

these isotopes, the additional neutrons occupy the 2p3/2 s.p. state and, in the latter nucleus,

also the 2p1/2, therefore the main neutron configuration is not affected. The B(M1) value

reduces for the heavier isotopes since the neutron 1f5/2 state begins to be occupied and this

diminishes the probability of the transition. This trend continues up to 60Ca where the 1f5/2

s.p. state is fully occupied and the configuration (1f5/2, 1f7/2)ν is not any more available.

The effect we have described has a remarkable experimental evidence in the electron

scattering experiments of Ref. [39] even though, to the best of our knowledge, the small

strength found in 44Ca with respect to the theoretical expectations remains unexplained.

We verified the validity of our interpretation of the B(M1) behavior by considering the

quantity

RB =
1

(uHF
µ )2 (vHF

µ′ )2

B(M1)

B(M1)cs

, (25)

where B(M1)cs indicates the B(M1) value of a closed shell nucleus in each chain, specifically

24O, 48Ca and 34Si, and (uHF
µ )2 and (vHF

µ′ )2 are the HF occupation probabilities of the quasi-

particles involved in the dominant configuration above mentioned. In the limiting case where

the 1+ state is composed only by the (µµ′) quasi-particle configuration, and the pairing is

switched off, RB is equal to unity. In this case, the behavior of the B(M1) values follows

that of the corresponding HF occupation probabilities.

We show in Fig. 7 the RB values for those nuclei where the configurations we are studying

are active. The results are located around the unity within a 10% confirming our interpre-

tation and indicating that pairing effects are negligible. The only exceptions are those of

30Ne and 32Mg nuclei. In the former case the large difference is due to the mixing of the

main proton configuration with the (3s1/2, 2s1/2)ν component. In the case of the 32Mg the

main pair is mixed with the (3s1/2, 1d3/2)ν configuration in the QRPA(F) calculations and

this produces a separation of the 1+ strength in two peaks. The inclusion of the G terms

partially removes this mixing almost recovering the RPA result. In both cases the mixing of

the main configuration with another one is due to small changes of the s.p. energies which

generate s.p. transitions with very similar energies.
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G. Giant resonances

We have presented so far the effects of the pairing on the low-lying excitations, and now

we discuss the giant resonance region where the main part of the strength is concentrated.

We summarize the large information regarding this energy region by considering the centroid

energies:

ωcentr =

ωmax∑
ω=ωmin

ωB(ω, 0+ → JΠ)

ωmax∑
ω=ωmin

B(ω, 0+ → JΠ)

. (26)

Here we have used ωmin = 0 for all the multipoles with the exception of the 2+, where we

have considered ωmin = 10 MeV to eliminate the large contribution of the low-lying states

dominated by conjugate configurations. The sums extend up to ωmax = 80 MeV in all cases.

The multipoles 1−, where we excluded the spurious states, 2± and 3± have been considered.

We did not calculate the centroids for the 1+ states because their strengths are concentrated

in a single state as we have already mentioned. The consistency of our calculations have

been tested by verifying the exhaustion of the Thomas-Reiche-Khun and the isoscalar sum

rules [40]. We obtained results analogous to those found in RPA calculations [32, 35]. More

details are given in Appendix A.

In Fig. 8 we show the relative differences

∆X =
ωXcentr − ωRPA

centr

ωXcentr + ωRPA
centr

, (27)

with X ≡ QRPA(F) and QRPA. The solid circles indicate the QRPA(F) results and the

triangles those of the QRPA calculations. Except in a few cases, these relative differences

are positive, indicating that the pairing is enhancing the position of the centroid. In almost

all nuclei and multipolarities, the differences are larger in QRPA(F) than in QRPA. The

largest effect is seen for the N = 20 isotones and the largest differences between QRPA(F)

and QRPA calculations are found for the 1− multipolarity.

V. SUMMARY AND CONCLUSIONS

We have investigated the excitation spectrum of 6 oxygen isotopes, 12 calcium isotopes

and 9 isotones with N = 20 by using a HF+BCS+QRPA approach with the aim of studying
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global effects of the pairing. We have used the same effective nucleon-nucleon force for the

HF part of our calculations, for the pairing sector, and as residual interaction in QRPA.

We presented results obtained by using the D1M parameterization of the Gogny force [26].

In our approach, pairing effects enter in the construction of the s.p. configuration space

generated by the HF+BCS calculations, and in the results of the QRPA where, in presence

of pairing, the G terms of Eqs. (11) and (12) become active. We carried out calculations

that we labelled RPA by using HF s.p. states and without G terms, and also calculations

with HF+BCS s.p. states but without G terms, that we called QRPA(F). The comparison

between RPA, QRPA(F) and full HF+BCS+QRPA calculations, that we called QRPA, has

been used to disentangle the source of the pairing effects. We summarize here below the

main results of our study.

• The s.p. wave functions, occupation probabilities and energies, together with the

effective nucleon-nucleon interaction are the input of the QRPA calculations. The

pairing effects on this input are related to the modifications of the s.p. energies

and of the occupation probabilities with respect to the HF values. We found a poor

correlation between the effects of the pairing on these two quantities. In other words,

our results show that large modifications of the occupation probabilities do not imply

large modifications of the s.p. energies, and viceversa (see Fig. 1).

• We observed that, in general, QRPA(F) and QRPA energies are larger than those

obtained in RPA calculations. We also found that, for each excited state, the QRPA(F)

energies are larger than those of the QRPA. The differences between QRPA(F) and

QRPA energies are smaller than those with the RPA. We concluded that the pairing

effect on the s.p. input produces an increase of the excitation energies, while in the

QRPA calculations it acts in the opposite direction. The former effect is larger than

that of the other one such as the final results is that QRPA energies are still larger

than those of the RPA (see Figs. 2 and 3).

• While the effects of the pairing on the excitation energy are well identified and have

a common trend, those concerning the changes on the many-body wave functions are

more difficult to single out and describe. We have defined an index W(µµ′; JΠ), Eq.

(24), to quantify the degree of collectivity of an excited state. We found general trends

20



only in quadrupole excitations where our results indicate that the pairing increases

the collectivity of the 2+ states while it reduces that of the 2− states (see Table III).

• We have observed that pairing effects on the 1− excitation, especially on the PDR, are

negligible (see Fig. 4).

• The study of the first excited 2+ states dominated by conjugate transitions allows a

comparison with other calculations and shows that our pairing effects are relatively

small (see Fig. 5).

• The strength of the 1+ excitation is concentrated on a single state, but we did not find

remarkable global pairing effects. Specific cases deserve a more thorough investigation

(see Figs. 6 and 7).

• The study of the excitations in the giant resonance region indicates that the energies

of the giant resonance centroids increase when the pairing is included (see Fig. 8).

The description of the experimental data for the excited states and nuclei studied does

not significantly improve if pairing is taken into account. In general, the pairing effects are

smaller than the discrepancy with the experimental data. We cannot exclude the possibility

that a different parameterization of the effective nucleon-nucleon interaction, with the same

fitting qualities of the Gogny force, can produce larger pairing effects and a better description

of the experimental data. However, we think more probable that these discrepancies are due

to physical phenomena that the HF+BCS+QRPA approach cannot describe.

Appendix A: Results for 18O

In this appendix we discuss some details regarding the convergence of our

HF+BCS+QRPA calculations. As example we present the results obtained for the 18O

nucleus. We conducted analogous tests for the heavier nuclei we have considered in our

investigation and we obtained similar results.

We carried out HF and BCS calculations by using a box integration radius of 12 fm. We

obtained binding energies of 136.54 MeV in HF and 138.92 MeV in HF+BCS, to be compared

with the experimental value of 139.8 MeV [34]. The value obtained by carrying out a HFB

calculation with the approach developed in [41] is 139.8 MeV.
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In Table IV we give the HF energies εµ, the occupation probabilities v2
µ, the quasi particle

energies Eµ, and the BCS s.p. energies ε̃µ for the neutron s.p. states with v2
µ > 10−4. For

sake of completeness we give the values of the same quantities obtained in a HFB calculation.

The configuration space used in the QRPA calculations includes all the s.p. states with

energy smaller than a chosen value Ep. We insert a further restriction regarding the number

of quasi-particle pairs. We neglect those pairs composed by quasi-particles whose energy is,

individually, larger than Epp. This second restriction is useful in heavy nuclei, but, in the

case of the nuclei studied in the present work, we have always used Ep = Epp. Nevertheless,

the use of these two cutoff energies is not enough to generate QRPA matrices of dimension

smaller than 4000, which is our numerical limitation. The problem is generated by the large

number of configuration pairs where both s.p. states have εµ > λ. For the excited states

of our interest, i.e. the low-lying ones and the giant resonances, the contribution of many

of these last type of pairs, is scarcely relevant. These are pairs where the wave functions

describing both quasi-particle states are non-resonant and lying high in the continuum. For

this reason we further reduce the number of this type of pairs by omitting those where the

occupation probability v2 of both states forming the pair is smaller than a critical value v2
cut.

As example, we show in Table V the excitation energies, and the corresponding B(E1)

values, of the first two 1− excited states. The 1−1 state is the spurious isoscalar excitation

related to the centre of mass motion. All the calculations have been carried out with

Ep = Epp = 100 MeV. The results of calculation A have been obtained without any further

limitations of the s.p. configuration space, by handling 1112 pairs. We reduce this number

by using v2
cut = 10−5 (calculation B), and v2

cut = 10−3 (calculation C). Even though there is

a remarkable reduction of the number of pairs when the selection related to v2
cut is activated,

the energy eigenvalues are only modified by a few tens of keV. The B(E1) values are more

sensitive to this reduction.

We tested the sensitivity of the energy of the spurious isoscalar 1− state to the dimensions

of the configuration space. In Table VI we show energies and B-values of the first three 1−

states obtained with v2
cut = 10−5. We have carried out calculations by using different values

of Ep = Epp. It is evident that the spurious state is extremely sensitive to the size of the

configuration space, while the energies of the other two states change very little.

We also checked the presence of a low-lying 0+ spurious state generated by the non

conservation of the particle number in the nuclear wave function. Also in this case the
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energy of this spurious state is extremely sensitive to the dimensions of the quasi-particle

configuration space. When we used Ep = Epp = 60 MeV we found this 0+ state at 0.11 MeV.

With larger configuration spaces, Ep = Epp > 100 MeV, it is below zero and the QRPA

secular equations (10) have an imaginary solution.

We tested the stability of our solutions by changing of 10% the Ep and Epp values. In all

cases we obtained differences in the QRPA energies within the numerical accuracy.

The results presented in this paper have been carried out by using the values Ep = Epp =

200 MeV and v2
cut = 10−3, which ensure the stability of the results for all the nuclei studied,

even in 62Ca, the heaviest one.

Finally, we evaluated energy weighted sum rules by integrating up to the excitation energy

of 50 MeV, and using Ep = Epp = 200 MeV. For the 1− excitation we calculated the Thomas-

Reiche-Khun sum rule which we found exhausted up to the 0.95 of the expected value, this

last one calculated by considering an enhancement factor of κ = 0.5 with respect to the

traditional value [32, 42]). For the isoscalar 0+ and 1− excitations [10, 40] we found an over

estimation of the expected values of about 1.1, to be compared with the values of 0.86 and

0.96 obtained, respectively, when RPA calculations have been carried out. The source of

this discrepancy is under investigation.
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ωQRPA(F) − ωRPA ωQRPA − ωRPA ωQRPA − ωQRPA(F)

state av. s.d. av. s.d. av. s.d.

1− 0.35 0.39 0.31 0.35 0.00 0.20

2+ 1.07 0.63 0.85 0.53 -0.22 0.47

3− 0.21 0.21 0.14 0.19 -0.07 0.07

1+ 0.81 0.54 0.90 0.60 -0.08 0.58

2− 0.30 0.27 0.26 0.24 -0.05 0.17

3+ 0.72 0.54 0.69 0.52 -0.03 0.47

Table II: Averages (av.) and standard deviations (s.d.) of the energy differences shown in Fig.

3, and also of those obtained for the 1+, 2− and 3+ multipole excitations. All the quantities are

expressed in MeV.
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W(µµ′; JΠ)

2+ 2−

A configuration RPA QRPA(F) QRPA configuration RPA QRPA(F) QRPA

Z = 8 16 (1d5/2, 1p1/2)ν 0.531 0.531 0.531

18 (2s1/2, 1d5/2)ν 0.989 0.952 0.881 (1d5/2, 1p1/2)ν 0.528 0.797 0.752

20 (2s1/2, 1d5/2)ν 0.972 0.727 0.766 (1d5/2, 1p1/2)ν 0.553 0.945 0.760

22 (2s1/2, 1d5/2)ν 0.954 0.937 0.685

24 (1d3/2, 2s1/2)ν 0.994 0.994 0.994

26 (1d3/2, 2s1/2)ν 0.921 0.937 0.772 (2p3/2, 1d3/2)ν 0.996 0.996 0.998

Z = 20 40 (1f7/2, 1d3/2)ν 0.520 0.520 0.520

42 (2p3/2, 1f7/2)ν 0.980 0.974 0.952 (1f7/2, 1d3/2)ν 0.567 0.768 0.736

44 (2p3/2, 1f7/2)ν 0.979 0.944 0.921 (1f7/2, 1d3/2)ν 0.615 0.902 0.867

46 (2p3/2, 1f7/2)ν 0.938 0.901 0.901 (1f7/2, 1d3/2)ν 0.937 0.962 0.945

48 (2p3/2, 1f7/2)ν 0.936 0.936 0.936

50 (2p3/2, 1f7/2)ν 0.940 0.902 0.756

50 (2p1/2, 2p3/2)ν 0.986 0.960 0.926

52 (2p1/2, 2p3/2)ν 0.984 0.984 0.978

54 (1f5/2, 2p1/2)ν 0.991 0.917 0.772

56 (1f5/2, 2p1/2)ν 0.996 0.459 0.409 (1g9/2, 1f5/2)ν 0.974 0.929 0.889

58 (1f5/2, 2p1/2)ν 0.999 0.899 0.785 (1g9/2, 1f5/2)ν 0.950 0.935 0.826

60 (1g9/2, 1f5/2)ν 0.936 0.936 0.936

62 (1g9/2, 1f5/2)ν 0.946 0.935 0.931

N = 20 30 (2s1/2, 1d5/2)π 0.950 0.865 0.722 (1d5/2, 1p1/2)π 0.543 0.395 0.364

32 (2s1/2, 1d5/2)π 0.938 0.907 0.868 (1d5/2, 1p1/2)π 0.821 0.859 0.801

34 (2s1/2, 1d5/2)π 0.925 0.923 0.921

36 (1d3/2, 2s1/2)π 1.003 0.903 0.827

38 (1d3/2, 2s1/2)π 0.999 0.808 0.659 (1f7/2, 1d3/2)π 0.520 0.824 0.806

40 (1f7/2, 1d3/2)π 0.542 0.542 0.542

42 (2p3/2, 1f7/2)π 0.990 0.982 0.962 (1f7/2, 1d3/2)π 0.425 0.641 0.626

44 (2p3/2, 1f7/2)π 0.977 0.958 0.938 (1f7/2, 1d3/2)π 0.420 0.831 0.806

46 (2p3/2, 1f7/2)π 0.966 0.926 0.922 (1f7/2, 1d3/2)π 0.405 0.945 0.925

Table III: Values of W(µµ′; JΠ), defined in Eq. (24), for the 2+ and 2− states obtained in RPA,

QRPA(F) and QRPA calculations. The subscripts π and ν indicate proton and neutron configu-

rations, respectively.
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HF HF+BCS HFB

s.p. state εµ v2
µ Eµ ε̃µ v2

µ Eµ εµ

1s1/2 -36.73 0.999 30.35 -36.78 0.998 30.37 -36.88

1p3/2 -19.95 0.995 13.65 -20.08 0.991 14.31 -20.66

1p1/2 -15.79 0.991 9.53 -15.96 0.983 9.39 -15.72

1d5/2 -5.88 0.332 1.63 -4.80 0.323 2.25 -5.81

2s1/2 -2.68 0.010 3.83 -2.60 0.025 4.28 -1.98

1d3/2 1.16 0.004 7.65 1.22 0.011 8.24 2.77

Table IV: Occupation probabilities and energies of the neutron quasi-particle states obtained in

HF, HF+BCS and HFB calculations for neutron states in 18O with v2 < 10−4. The HF energies

εµ, the quasi-particle energies Eµ, defined in Eq. (1), and the energies ε̃µ, defined in Eq. (21), are

expressed in MeV.

1−1 1−2

calculation v2
cut # of pairs ω (MeV) B(E1) (e2 fm2) ω (MeV) B(E1) (e2 fm2)

A - 1112 2.73 1.87 · 10−3 10.62 8.18 · 10−2

B 10−5 271 2.76 1.86 · 10−3 10.64 7.73 · 10−2

C 10−3 164 2.79 1.53 · 10−3 10.65 7.53 · 10−2

Table V: Excitation energies and B(E1) values of the first two 1− states of 18O in the

HF+BCS+QRPA approach. In all the cases we used Ep = Epp = 100 MeV. The results of cal-

culation A have been obtained without any further limitation of the s.p. configuration space. In

calculations B and C we have excluded those pairs where both quasi-particle states have v2
µ < 10−5

and 10−3, respectively.
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Ep = Epp ω1 B1(E1) ω2 B2(E1) ω3 B3(E1)

60.0 3.22 2.98 · 10−3 11.16 1.19 · 10−2 11.99 1.27 · 10−1

80.0 3.11 2.51 · 10−3 11.12 1.00 · 10−2 11.98 1.29 · 10−1

100.0 2.68 2.76 · 10−3 11.02 7.43 · 10−3 11.96 1.32 · 10−1

120.0 2.55 2.64 · 10−3 10.98 6.37 · 10−3 11.95 1.33 · 10−1

140.0 2.41 1.89 · 10−3 10.96 5.85 · 10−3 11.94 1.35 · 10−1

160.0 2.16 1.71 · 10−3 10.94 5.14 · 10−3 11.94 1.36 · 10−1

180.0 2.12 1.62 · 10−3 10.93 4.94 · 10−3 11.93 1.36 · 10−1

200.0 1.92 1.69 · 10−3 10.92 4.63 · 10−3 11.93 1.36 · 10−1

250.0 1.87 1.34 · 10−3 10.91 4.48 · 10−3 11.93 1.37 · 10−1

Table VI: Excitation energies, ω in MeV, and B(E1) values, in e2 fm2, of the first three 1− excited

states as a function of the cutoff energies Ep and Epp, also expressed in MeV.
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the nuclei studied with Z = 8 (panels (a) and (d)), Z = 20 (panels (b) and (e)) and N = 20 (panels

(c) and (f)). The solid circles and triangles show our QRPA(F) and QRPA results, respectively.

The solid squares indicate the experimental data from the compilation of Ref. [36], with the

exception of the B(E2) value of 30Ne taken from Ref. [9]. The open squares represent the results

of Khan et al. [8], for Z = 8, Carlson et al. [11], for Z = 20, and Yamagami and Van Giai [9], for

N = 20. The open circles show the results of Yüksel et al. [12] also for Z = 20. Our QRPA and

QRPA(F) energy values for the 40Ca nucleus are divided by a factor 3.
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