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Introduction

The SN 1987A explosion was a milestone event in astroparticle physics. In
particular, three hours before the visible light from SN 1987A reached the
Earth, a neutrino burst was detected in three neutrino observatories: namely
11 neutrinos at Kamiokande II in Japan; 8 at Irvine-Michigan-Brookhaven
in USA and 5 at Baksan in the Soviet Union. The neutrino burst lasted
less than 13 s. These 24 events were the �rst (and until now unique) direct
detection of supernova (SN) neutrinos and marked the birth of neutrino as-

tronomy. Despite the exiguous number of events detected, neutrinos from SN
1987A were extremely useful to constrain neutrino properties (mass, charge,
interactions). Furthermore, the detection of the neutrino burst was also im-
portant to constrain properties of weakly interacting slim particles (WISPs,
with a mass m < eV), which would be e�ciently produced in the hot SN
core, causing an additional energy loss that would have shortened the neu-
trino burst. Since SN 1987A neutrino data were roughly in agreement with
theoretical predictions, strong bounds were placed on the properties of these
exotic particles. One of the most studied WISP candidate studied in the
context of the SN 1987A is the axion. This is an hypothetical particle postu-
lated to solve a puzzle of Quantum Chromodynamics: the strong CP problem.
Furthermore, it has been realized that axions are also good candidates for
the dark matter. Thus their discovery is very desirable since it would allow
one to �kill two birds with the same stone�.

In this Thesis we will revise and improve the seminal works on axions
done in the context of SN 1987A. In particular the main aim of this Thesis
is to study the detectability of a SN axion signal in a future Mton-class
water Cherenkov detector, such as the proposed Hyper-Kamiokande project
in Japan. In this detector, the main detection channel for axions is the
oxygen absorption. The oxygen de-excitation lead a gamma signal that would
be potentially detectable. In order to estimate this signal, it is necessary
to perform a re-evaluation of the axion-oxygen cross section estimated in a
seminal paper of Engel et al. [Eng90]. This calculation based on advanced
methods of nuclear physics is the main result of this Thesis.



The work is organized as follows:

In Chapter 1 we present an introduction to the axion models, experimen-
tal bounds and current searches on this particle. In Chapter 2 we revise
the mechanism of SN explosion, discuss the expected neutrino signal and
characterize the axion emissivity from a SN using the state-of-the-art SN
simulations. In Chapter 3 we calculate the axion-oxygen absorption cross
section using the Random Phase Approximation (RPA) technique. Then we
evaluate the gamma branching ratio by means of a statistical method based
on the SMARAGD Hauser-Feshbach reaction code. In Chapter 4 we char-
acterize the axion signal in a Mton class Cherenkov detector and discuss its
detectability. Finally, in Chapter 5 we summarize these results and give the
conclusions.
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Chapter 1

The strong CP problem and the

axion

In this Chapter we introduce the strong CP problem, an unsolved puzzle of
Quantum Chromodynamics (QCD), and its possible solution in terms of ax-
ions through the Peccei-Quinn mechanism. In this context, Section 1.1 deals
with anomalies in Quantum Field Theory (QFT) following the Fujikawa's
method [Kak93]. In Section 1.2 we use this concept to rigorously explain
the strong CP problem. The Peccei-Quinn mechanism is presented in Sec-
tion 1.3. This solution implies the existence of a new particle, the axion. In
Section 1.4 we discuss the current constraints on the axion parameter space.

1.1 Anomalies in QFT

Let we consider a SU(N) gauge theory of massless fermions described by the
following Lagrangian

L = iΨ̄(x) /DΨ(x) ; (1.1)

where Dµ = ∂µ− igAµ is the usual covariant derivative, Aµ is the gauge �eld
and /D = γµDµ. This theory has an exact axial (or chiral) global symmetry

Ψ(x)→ e
i
2
θγ5

Ψ(x) '
(

1 +
i

2
θγ5

)
Ψ(x) ;

Ψ̄(x)→ Ψ̄(x)e
i
2
θγ5 ' Ψ̄(x)

(
1 +

i

2
θγ5

)
;

(1.2)

where θ is a constant. Although Eq. (1.2) is an exact symmetry of the
classical theory, we will check whether Eq. (1.2) remains a symmetry after
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quantization. In a classical �eld theory the action determines the physics of
the system considered. In QFT this role is played by the partition function

Z =

ˆ
DΨ̄DΨei

´
d4x (L+Ψ̄η+η̄Ψ) . (1.3)

We will compute the transformation of the partition function under Eq. (1.2)
with a more general, possibly non constant, parameter θ(x). The action
becomes

S =

ˆ
d4x Ψ̄(x)i /DΨ(x)→ S ′ =

ˆ
d4x Ψ̄(x)i /DΨ(x) +

1

2

ˆ
d4x θ(x)∂µJ

µ
5 (x) ;

(1.4)
where

Jµ5 (x) = Ψ̄(x)γµγ5Ψ(x) . (1.5)

Varying θ(x) in Eq. (1.4) we have ∂µJ
µ
5 = 0, the classical conservation law

arising from the Noether's theorem. In order to study how the functional
measure changes, let we consider the eigenfunctions of the Dirac operator

/Dψn(x) = λnψn(x) ; (1.6)

without loss of generality we considered only discrete eigenvalues. The Dirac
spinors can be decomposed as

Ψ(x) =
∑
n

anψn(x) ;

Ψ̄(x) =
∑
n

ψ†n(x)b̄n ;
(1.7)

with an and b̄n constant coe�cients (Grassmann numbers). The functional
measure can be explicited as

DΨ̄DΨ→
∏
nm

dandb̄n . (1.8)

In this basis the transformation in Eq. (1.2) can be written as

e
i
2
θ(x)γ5

Ψ(x)→
∑
n

a′nψn(x) = e
i
2
θ(x)γ5

∑
m

amψm(x) ; (1.9)

and using the orthonormality of the eigenfunctions

a′n =
∑
m

Cnmam ;

Cnm =

ˆ
d4xψ†n(x)e

i
2
θγ5

ψm(x) .

(1.10)
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Therefore the functional measure changes as∏
m

da′m = det(Cnm)−1
∏
n

dan . (1.11)

For small θ(x), since detM = etr(lnM),

det(Cnm)−1 = det

(
δnm +

i

2

ˆ
d4x θ(x)ψ†nγ

5ψm(x)

)−1

=

= e−
i
2

´
d4x θ(x)A(x) ;

(1.12)

where
A(x) =

∑
n

ψ†n(x)γ5ψn(x) . (1.13)

Considering also an equal contribution from DΨ̄, the functional measure
changes as

DΨ̄DΨ→ e−i
´
d4x θ(x)A(x)DΨ̄DΨ . (1.14)

The integral in Eq. (1.14) is divergent under a global transformation and
must be regularized. A possible regularization is obtained by inserting a
term exp(− (λn/M)2) and taking the limit M →∞:

A(x) = lim
M→∞

∑
n

ψ†n(x)γ5e−(λn/M)2

ψn(x) =

= lim
M→∞

∑
n

ψ†n(x)γ5e−( /D/M)
2

ψn(x) .
(1.15)

We can perform a change of basis

ψn(x) = 〈x|n〉 =

ˆ
d4k

(2π)2
e−ikx〈k|n〉 ; (1.16)

and write the trace of a matrixM as

tr(M) =
∑

ψ†n(x)M(x)ψn(x) =

=
∑
n

〈n|x〉M(x)〈x|n〉 =

=
∑
n

ˆ
d4k

(2π)2

d4k′

(2π)2
eikx〈n|k〉M(x)e−ik

′x〈k′|n〉 =

=

ˆ
d4k

(2π)4
eikxM(x)e−ikx .

(1.17)
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Using Eq. (1.15) and Eq. (1.17) we obtain that

A(x) = lim
M→∞

tr

ˆ
d4k

(2π)4
eikxγ5e−( /D/M)

2

e−ikx =

= lim
M→∞

tr

ˆ
d4k

(2π)4
eikxγ5e−

1
M2 (− ig2 γµγνFµν+D2)e−ikx ;

(1.18)

where Fµν = i
g
[Dµ, Dν ]. The ∂

2 term diverges as

ˆ
d4k

(2π)4
ek

2/M2

=
iM4

16π2
; (1.19)

then only the second order terms in the exponential contribute to the trace.
From Eq. (1.18) we obtain

A(x) = lim
M→∞

−g
2

2!

1

4M4
tr γ5(γµγνFµν)

2

ˆ
d4k

(2π)4
ek

2/M2

=

=
g2

16π2
tr F̃ µνFµν ;

(1.20)

where

F̃ µν =
1

2
εµναβFαβ ; (1.21)

is the dual �eld and we used

tr(γ5γµγνγαγβ) = 4iεµναβ ; (1.22)

where εµναβ is the Levi-Civita symbol. Using Eq. (1.4) and Eq. (1.20) we can
calculate the variation of the partition function:

Z =

ˆ
DΨ̄DΨei

´
d4xL →

Z =

ˆ
DΨ̄DΨei

´
d4xLe

i
´
d4x θ(x)

(
∂µJ

µ
5 (x)− g2

16π2 tr F̃µνFµν

)
.

(1.23)

Varying θ(x) we arrive at the following constraint

∂µJ
µ
5 =

g2

16π2
tr F̃ µνFµν . (1.24)

The functional measure is modi�ed by the transformation in Eq. (1.2), there-
fore the classical symmetry is lost. This phenomenon is called anomaly. One
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can prove that this non conservation of the axial current is given exactly by
the �triangle diagram� [Pes95]

where the incoming line is a pseudoscalar, the loop is given by fermions
and the outgoing lines are two gauge bosons. This diagram must be taken
in account for the calculation of the decay rate of π0 → γγ. Analyzing
the Quantum Electrodynamics (QED) one can obtain some important and
general results about anomalies. In this case Eq. (1.24) is written as [Pes95]

∂µJ
µ
5 =

e2

16π2
F̃ µνFµν =

e2

8π2
∂µ(εµναβAν∂αAβ) . (1.25)

Eq. (1.25) shows that the anomaly can be written as a total divergence.
Moreover, integrating over d3x we can interpret the anomaly as a non con-
servation of the number of left minus right-handed �elds [Pes95]:

∂0(NL −NR) =
e2

4π2

ˆ
d3xE ·B ;

NL −NR =

ˆ
d3x (ψ†LψL − ψ

†
RψR) .

(1.26)

All this conclusions for QED are still valid in non-abelian gauge theories with
slight modi�cations due to group factors.

1.2 The U(1)A problem

The QCD is a SU(3)c gauge theory described by the following Lagrangian
[Kak93,Pes95]

LQCD =
∑
a

Q̄a(i /D −m)Qa −
1

2
trGµνGµν ;

Qa =

 qa,1
qa,2
qa,3

 ;

(Dµ)ij = δij∂µ − ig(Aµ)ij ;

Aµ = Aaµ
λa

2
;

(1.27)
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where a is the �avor index, i and j are the colour indices and λa are the Gell-
Mann matrices. At low energy, neglecting the masses of up and down quarks,
the QCD Lagrangian [Eq. (1.27)] for these quarks has SU(2)V ⊗ SU(2)A ⊗
U(1)V ⊗ U(1)A as group of global symmetry in the �avor space. In fact the
SU(2)V ⊗ U(1)V symmetry corresponds to the conservation of isospin and
baryon number. This symmetry is more evident because of the occurrence of
isospin multiplets in the hadrons spectrum. The other SU(2)A⊗U(1)A sym-
metry does not correspond to any multiplets. This absence can be explained
via spontaneous symmetry breaking [Pec77a,Pec77b,Pec06]. In QCD quark-
antiquark pairs have attractive interactions and the energy cost to create a
pair is zero if they are massless. Therefore the vacuum will contain a quark-
antiquark condensate with zero angular momentum and momentum [Pes95]:

〈q̄aRqbL〉 = −Λ3
QCDδ

ab ;

ΛQCD = 250 MeV .
(1.28)

ΛQCD is the scale of symmetry breaking: no bound states of quarks exist for
energies above ΛQCD.

This condensate mixes the two helicities, then quarks appear massive and
the mass term breaks dynamically the SU(2)A ⊗ U(1)A symmetry. When
a global continuous symmetry is spontaneously broken, a massless spin-0
�eld arises for each generator of the broken symmetry group. This is the
Goldstone theorem and this scalar �eld is called Goldstone boson. For the
SU(2)A ⊗ U(1)A symmetry, the Goldstone theorem predicts four massless
particles. Three of them can be identi�ed with pions, that are relatively
light. Pions are odd-parity particles and correspond to the generators of
SU(2)A. Therefore they are created by the axial isospin current, and the
matrix element of production can be parametrized as [Pes95]

〈0|q̄γµγ5τaq|πb(p)〉 = −ipµfπδabe−ipx ;

q =

(
u
d

)
;

(1.29)

where
fπ = 93 MeV ;

is the pion decay constant.
The absence of the fourth light state forces us to conclude that U(1)A

is not a true symmetry of QCD. The chiral anomaly in Eq. (1.24) seems to
solve this problem. In fact under U(1)A global transformations the action is
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not invariant

S =
∑
b

ˆ
d4x Q̄b(x)i /DQb(x)→

S ′ =
∑
b

ˆ
d4x Q̄b(x)i /DQb(x) + θ

g2N

16π2

ˆ
d4x tr G̃µνGµν ;

(1.30)

where N is the number of �avors [Eq. (1.25)]. At �rst sight Eq. (1.30) shows
that U(1)A is not a symmetry of QCD, but the added term is the divergence
of the so called Bardeen current [Eq. (1.25)] [Pec06]

tr G̃µνGµν = 4∂µK
µ ;

Kµ = εµαβγ tr

(
1

2
Aα∂βAγ − i

g

3
AαAβAγ

)
.

(1.31)

Then from Eq. (1.30)

δS = θ
g2N

4π2

ˆ
d4x ∂µK

µ = θ
g2N

4π2

ˆ
dSµK

µ ; (1.32)

and using the simple boundary condition Aµ = 0, one recovers that U(1)A is a
symmetry. However, thanks to the gauge invariance, the boundary condition
for vacuum con�gurations can be either Aµ = 0 or Aµ = −i/g(∂µU)U−1,
identifying di�erent vacua. In general, every �eld con�guration that approach
asymptotically to di�erent vacua is called instanton. We will study the SU(2)
QCD in the radiation gauge (Aµ0 = 0) [Pec06]. The gauge transformation
operators can have di�erent boundary conditions:

lim
r→∞

Un = e2πin n ∈ Z ; (1.33)

where the number n, the winding number, is given by [Pec06]

n =
ig3

24π2

ˆ
d3x εijk tr(AiAjAk) ;

Ai = − i
g

(∂iUn)U−1
n .

(1.34)

In the radiation gauge, Eq. (1.34) is linked to the only non zero component
of the Bardeen current

K0 = −ig
3
εijk tr(AiAjAk) ;

n = − g2

8π2

ˆ
d3xK0 =

= − g2

32π2

ˆ
d4x tr(G̃µνG

µν) .

(1.35)
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Therefore for some vacuum con�gurations the integral in Eq. (1.32) is non
zero:

δS = θ
g2N

4π2

ˆ
dS0K

0 = −2Nn ; (1.36)

thus U(1)A is not a true symmetry of QCD. The vacua can be classi�ed
according to the winding number of the gauge �elds therein, we will call
them |n〉 n-vacua. The true vacuum is a superposition of this n-vacua

|θ〉 =
∑
n

e−inθ|n〉 ; (1.37)

and it is called θ-vacuum. A transformation Uk generates a shift in the vacua:

Uk|n〉 = |n+ k〉 ;

U1|θ〉 = e−iθ|θ〉 .
(1.38)

The vacuum to vacuum amplitude will be

〈n|e−iHt|m〉 =

ˆ
DAµe

−i
´
d4xL δ

(
ν +

g2

32π2

ˆ
d4x tr G̃µνG

µν

)
;

ν = n−m ;

(1.39)

considering only �eld con�gurations with winding number ν that can account
for the transition. The amplitude between two θ vacua contains a phase
factor:

〈θ|e−iHt|θ〉 =
∑
mn

ei(n−m)θ〈n|e−iHt|m〉 =

=
∑
ν

eiνθ
∑
m

〈m+ ν|e−iHt|m〉 =

=
∑
ν

eiνθ
ˆ
DAµe

−i
´
d4xL δ

(
ν +

g2

32π2

ˆ
d4x tr G̃µνG

µν

)
.

(1.40)

Therefore the e�ective QCD Lagrangian will be [Pec06]

Leff = LQCD − θQCD
g2

32π2
tr G̃µνG

µν ; (1.41)

where we introduced the parameter θQCD. Eq. (1.41) states that the complex
structure of the QCD vacuum can be seen as an extra self interaction of the
gluon �eld. In general the quark mass matrixM is complex and non diagonal,
but it can be made real and diagonal with a quark �elds rede�nition. The
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chiral transformation used to rede�ne quark �elds, adds an extra term to the
Lagrangian in Eq. (1.41) equivalent to the following shift [Pec06]

θQCD → θ̄QCD = θQCD + arg detM . (1.42)

The extra term in Eq. (1.41) violates CP. However, the measure of the neu-
tron electric dipole moment puts a severe constraint on θ̄QCD [Pat16]:

|dn| < 0.30× 10−25e cm ;

|θ̄QCD| < 10−10 .
(1.43)

This number is very small although it derives from two unrelated quantities
[Eq. (1.42)]. Therefore its cancellation introduces a naturalness problem: the
strong CP problem. Clearly it might be possible that for anthropic reasons
θ̄QCD has a so small value, but it is an unsatisfactory explanation and a
Universe where CP is strongly violated also seems to be habitable. Maybe
CP is spontaneously broken, but experiments support an explicit violation
of CP [Pec06].

1.3 Axions

The most elegant solution to the strong CP problem, given by Peccei and
Quinn [Pec77a,Pec77b,Wei78,Wil78], is to postulate a new extra symmetry
group: U(1)PQ. This is an axial global symmetry, then it must be anomalous.
Furthermore this symmetry must be spontaneously broken because we do
not experience it. The Goldstone boson of the theory is called axion, a
pseudoscalar. Under a U(1)PQ transformation with parameter α, the axion
�eld transforms as

a(x)→ a(x) + αfa ;

where fa is the scale of spontaneous symmetry breaking. The Standard
Model (SM) Lagrangian will become [Pec77a,Pec77b]

Ltot = LSM+θ̄QCD
g2

32π2
G̃a
µνG

µνa − 1

2
∂µa∂

µa+

+Lint[a,Ψ] + ξ
a

fa

g2

32π2
G̃a
µνG

µνa + ξγ
a

fa

e2

16π2
F̃µνF

µν ;

(1.44)

where LSM is the SM Lagrangian, Ga
µν is the gluon �eld strenght tensor, Fµν

is the photon �eld strenght tensor, ξ and ξγ are the axion-gluon and axion-
photon coupling constants, Lint[a,Ψ] is an axion-fermion interaction term
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and the last two terms ensure the anomaly of the PQ current given by strong
and electromagnetic interactions:

∂µJ
µ
PQ = ξ

g2

32π2
G̃a
µνG

µνa + ξγ
e2

16π2
F̃µνF

µν . (1.45)

Axions couple to photons and gluons through these anomaly induced inter-
action terms

Laγ = −gaγ
4
a FµνF̃

µν = gaγa E ·B ; (1.46)

a
γ

γ

Lag = −1

4
gaga G̃

a
µνG

µνa . (1.47)

a
g

g

This e�ective potential has a minimum when

∂Veff

∂a

∣∣∣∣
a0

= − ξ

fa

g2

32π2
G̃a
µνG

µνa

∣∣∣∣
a0

= 0 . (1.48)

This condition gives a0 = −θ̄QCDfa/ξ. The Lagrangian written in terms
of the physical �eld aphys = a − a0 has no more a CP violating term. This
cancellation solves the strong CP problem: the CP odd term is driven to zero
by the axion �eld dynamics [Pec06]. The axion-gluon interaction generates a
mass term for the axion �eld and allows the mixing of π0 and a as shown in
Fig. (1.1). Axions pick up an e�ective mass approximately given by [Raf96]

mafa ≈ mπfπ ;

that arises from the expansion around the minimum of the gluon-axion in-
teraction potential.
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a π0
g

g

q

q̄

Figure 1.1: a− π0 mixing.

1.3.1 Axion models

Here we present some of the possible axion models.

Peccei-Quinn-Weinberg-Wilczek model (PQWW)

In the PQWW model [Pec77b, Pec77a, Wei78, Wil78] the axion degree of
freedom is hidden in the Higgs �eld. This model introduces an extra Higgs
doublet, Hu, to the SM Higgs, Hd: one gives mass to u-type and the other to
d-type quarks. Lepton masses are given by one of these �elds, or by a third
Higgs �eld. The interaction Lagrangian

L = −GuQ̄LHuuR −GdQ̄LHddR −GlL̄LHdeR ;

QL =

(
uL
dL

)
;

LL =

(
νL
eL

)
;

(1.49)

must be U(1)PQ invariant. This condition �xes the U(1)PQ charges of the
fermion �elds. Both the Higgs �elds have a symmetry breaking potential

V (Hu, Hd) =
λu
4

(
|Hu|2 −

v2
u

2

)2

+
λd
4

(
|Hd|2 −

v2
d

2

)2

; (1.50)

where the two U(1) symmetries, one for each Higgs doublet, represent the
hypercharge and the PQ symmetry. After the symmetry breaking, the two
Higgs �elds take the values

Hu =
vu√

2

(
1
0

)
eiax/v ;

Hd =
vd√

2

(
0
1

)
eia/xv ;

x =
vu
vd

;

v =
√
v2
u + v2

d .

(1.51)
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Then the Lagrangian becomes

L = −Gu
vu√

2
eiax/vūLuR −Gd

vd√
2
eia/xvd̄LdR −Gl

vd√
2
eia/xvēLeR . (1.52)

Expanding the exponentials we can see that the axion couplings to SM par-
ticles are suppressed by a factor m/v. The Peccei-Quinn scale is close to
the electroweak scale because it is connected to the u-type quarks masses.
However, high energy experiments exclude models with a Peccei-Quinn scale
near the electroweak scale [Kim86]. In fact the Yukawa coupling of axions
with quarks allows the decay of K, J/Ψ and Υ meson to a lighter meson
plus an axion. For instance, the decay K+ → π+a is allowed by axion-π0

oscillations.

K+

π+

a

This decay is not observed giving a bound on gau and gad, the axion-up and
axion-down coupling constants [Kim86]

BR(K+ → π+a) < 3.8× 10−8 ;

g2
au, g

2
ad < 4× 10−10 .

(1.53)

Another possible decay is J/Ψ → γa, with a low background. The axion-
charm coupling constant gac has the following bound [Kim86]

BR(J/Ψ→ γa)

BR(J/Ψ→ µ+µ−)
=

g2
ac

2πα
;

g2
ac < 10−6 .

(1.54)

A similar limit can be extracted from Υ→ γa for the axion-bottom coupling
constant gab and gives [Kim86]

g2
ab < 10−4 . (1.55)

The connection between the values of fa and gaq, where q is the quark �avor,
is model dependent. However, neglecting the model dependent factors, gaq ∼
GeV /fa. Therefore the PQWW model, in which fa ∼ 100 GeV, is surely
ruled out. This type of experiments can only probe a limited energy range
near the electroweak scale. When fa is high enough, the production rates
and the detection probabilities fall down, making impossible to test axions
with high energy experiments. The only viable models, in which fa � v, are
called invisible axion models. This new energy scale gives very light, weakly
interacting and long-lived axions.
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1.3.2 Invisible axion models

Kim-Shifman-Vainshtein-Zakharov model (KSVZ)

This model [Shi80] needs a heavy quark doublet, Q, that is a SU(3)c singlet.
The scalar �eld ϕ, unlike the previous model, is a SM singlet that gives mass
only to the heavy quark:

L = −GQϕQ̄LQR ;

Q =

(
QL

QR

)
;

(1.56)

to make this term invariant, ϕ has charge two. Explicitly

ϕ→ eiαϕ ;

Q→ e−iγ
5 α

2Q ;
(1.57)

and this symmetry ensures the absence of a mass term for the heavy quark.
The usual symmetry breaking potential [Eq. (1.50)] has fa as free parameter
and we choose fa � v. After the symmetry breaking,

ϕ→ fa√
2
ei

a
fa ; (1.58)

and the heavy quark gets a very large mass term

L = −GQ
fa√

2
ei

a
fa Q̄LQR . (1.59)

The pseudoscalar �eld a, the axion �eld, interacts with heavy quarks with
the interaction in Eq. (1.59) and with SM particles via the anomaly induced
interactions. The mass of the heavy quark doublet is mQ ' GQfa. Since the
quark doublet is very massive, at low energy the only important interaction is
with two gluons and two photons. In this model axions do not interact with
SM fermions at the tree level and the two gluons vertex makes possible an
interaction with hadrons at the loop level, therefore these axions are called
hadronic axions.

Dine-Fischler-Srednicki-Zhitnitsky model (DFSZ)

The DFSZ axion [Din81] requires a Higgs sector formed by two Higgs doublet
Hu and Hd similar to the PQWW model. There is also a complex scalar SM
singlet ϕ. The interaction Lagrangian is

L = −λHϕ2HuHd ; (1.60)
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invariant for opposite charges of ϕ and Hu/d. The observed SM Higgs forces
λH to be small enough to have a Higgs boson with a mass of 125 GeV. The
Higgs �elds couple also to the SM fermions with the usual Yukawa cou-
pling. At low energy the fermions kinetic term generates a coupling between
fermions and axions at the tree level

q̄ /Dq → Cf
2fa

q̄γµγ5q∂µa . (1.61)

1.4 Axion bounds

Axion parameter space can be constrained by three classes of arguments
summarized in Fig. (1.2):

• Cosmological,

• Astrophysical,

• Laboratory experiments.

Axions can behave as cold or hot dark matter depending on the value
of the Peccei-Quinn scale. If fa < 1.2 × 1012 GeV, axions interact strongly
enough to be thermally produced in the hot primordial plasma. Su�ciently
strong interacting axions (fa < 3 × 107 GeV, ma > 0.2 eV) decouple after
the QCD phase transition at T ≈ 250 MeV. In this case, the most rele-
vant interaction processes for axions involve hadrons rather than quarks and
gluons, relevant at earlier epochs. Then, there would be a background of
low mass (ma ∼ eV) hot relic axions. Analogously to neutrinos, axions hot
dark matter would suppress small scale structures in the Universe. Latest
cosmological analysis give ma < 0.67 eV [Arc13] [Fig. (1.2)]. Conversely, if
fa > 1.2 × 1012 GeV axions interact so feebly with matter that they never
reach thermal equilibrium. In this case they can be e�ciently produced
only by non-thermal mechanisms as topological defect decay and misalign-
ment production. Depending on the production mechanism, axions with
10µ eV < ma < 100µ eV [Arc13] would provide the cold dark matter.

Besides these bounds, the majority of experiments exploits the axion-
photon interaction, a common feature of all axion models. Since this interac-
tion is almost model independent, the axion parameter space can be enlarged
without imposing any relation between gaγ andma [Fig. (1.3)]. Particles with
an interaction Lagrangian as Eq. (1.46) and unrelated gaγ and ma are called
axion-like particles (ALPs), to distinguish them from QCD axions. ALPs ap-
pear in many SM extensions, as String Theory, and can be used to probe very
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Figure 1.2: Constraints and searches on QCD axions. The red and brown bounds
are given by cosmological considerations on hot and cold dark matter
respectively. The blue bounds refer to direct detection experiments.
The sensitivity of future experiments is represented in the blue dot-
ted boxes. The light green zones are excluded by the energy loss of
horizontal branch stars in globular clusters. The dark green zones
are excluded by the analysis of the neutrino signal from SN 1987A.

high energy scale. The ALP-photon interaction is given by the Lagrangian
in Eq. (1.46), which contains the model dependent coupling constant

gaγ =

(
0.203(3)

E

N
− 0.39(1)

)
ma

GeV2 ; (1.62)

where E and N are the electromagnetic and color anomalies. For DFSZ
axions, E/N = 8/3 and for KSVZ axions, E/N = 0 if the electric charge
of the heavy quark is zero. The yellow region in Fig. (1.3) is the QCD
axion parameter space, which is not a line because of the di�erences between
various models as DFSZ and KSVZ. Axion-photon coupling allows to obtain
constraints on the otherwise invisible axions. In particular two e�ects can
be exploited. The two-photon coupling allows the conversion a ↔ γ in an
external electric or magnetic �eld by virtue of the process shown in Fig. (1.4).

This process was �rst proposed by Primako� (1951) to study the π0 − γ
coupling which is experimentally di�cult to measure in free decays π0 →
γγ. In stars the Primako� process allows for the production of low mass
pseudoscalars in the microscopic electric �elds of nuclei and electrons. In
the other case of a macroscopic �eld, usually a large scale magnetic �eld,
the momentum transfer is small, the interaction is coherent over a large
distance, and the conversion is best viewed as an axion-photon oscillation
phenomenon in analogy to neutrino �avor oscillations. In particular, photon-
axion conversions in coherent large-scale macroscopic magnetic �elds were
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Figure 1.3: Parameter space for axion-like particles. The exclusion regions are
described in the text. The yellow band is the QCD axion parameter
space. (Figure taken from [Ira18]).

at the basis of two di�erent experimental techniques to search for axions
proposed by Pierre Sikivie in 1983 [Sik84]: haloscope and helioscope.

The haloscope technique searches for DM axions in the galactic halo
through a microwave resonant cavity, where one can vary the cavity fre-
quency until one matches the axion mass, getting a peak in the signal of the
cavity.

Exploiting this e�ect, the Axion Dark Matter eXperiment (ADMX) tries
to detect axions in the Milky Way dark matter halo. At the moment, the
experiment excludes the mass range 1.9µ eV < ma < 3.3µ eV for KSVZ
axions [Fig. (1.2)] [Asz09].

ALPs and QCD axions are produced by Primako� e�ect in the hot stellar
plasma. Solar axion telescopes, the helioscopess, like SUMICO and CAST
are built to detect solar axions by Primako� e�ect, searching for the back con-
versions into X-rays into a magnet pointing towards the Sun. CAST gets the
best experimental limits for low-mass ALPs, getting gaγ < 6.6×10−11 GeV−1

and ma < 0.02 eV [Pat16]. Moreover, this experiment for the �rst time
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Figure 1.4: Primako� a↔ γ conversion in an external electromagnetic �eld.

enters in the QCD axion parameter space region [Fig. (1.3)]. The future
helioscope IAXO will explore the zone indicated in Fig. (1.2), improving the
CAST bound with a sensitivity to gaγ . 10−12 GeV−1 [Ira11].

Using photon-ALP conversions, the �light shining through walls� exper-
iments search whether photons pass an optical barrier thanks to photon-
ALP oscillations in a magnetic �eld. The current best limit is given by the
ALPS experiment at DESY which sets as limit gaγ < 3.5 × 10−8 GeV−1 for
ma < 0.3 meV [Ehr10] [Fig. (1.3)]. Furthermore, the ALP-photon conversion
might explain the observed hardening of TeV photons coming from very far
sources. According to Standard physics, TeV photons should be absorbed
by the cosmic microwave background radiation in pair production processes
γγ → e+e− and should not reach us. Conversely, di�erent experiments have
observed TeV photons coming from faraway sources. This transparency of the
Universe might be an hint to the existence of ALPs in the rangema < 10−7 eV
and gaγ ∼ 10−12 − 10−10 GeV−1 [Dea11].

The analysis of a large number of stars can be used to test the presence
of an additional energy loss channel caused by axions produced in Primako�
processes. In this context a useful probe is constituted by globular clusters,
bound systems of stars with nearly the same age and di�ering only for their
mass. Globular clusters can be used to estimate the duration of each stellar
evolution phase. The additional energy loss channel can shorten the helium
burning phase, the stars in the horizontal branch (HB) of the Hertzsprung-
Russel diagram are in this phase. The globular clusters data give the bound
gaγ < 6.6× 10−11 GeV−1 and ma < 1 keV [Aya14].

Supernova explosions are another important tool to study ALPs and QCD
axions. The neutrino burst detected from SN 1987A was roughly in agree-
ment to standard SN models, showing no evidence of exotic energy loss chan-
nels associated with new particles [Raf96]. The presence of weakly interacting
axions reduces the duration of the burst. Numerical simulations show that
KSVZ axions with fa > 4 × 108 GeV, in the free-streaming regime, do not
shorten signi�cantly the burst duration. However, also very strongly inter-
acting axions would be trapped inside the SN core and would not modify the
burst. Too strongly interacting axions are excluded because of the absence of

17



an axion signal in the neutrino Cherenkov detector Kamiokande II. A small
window around fa ∼ 106 GeV, called �hadronic axion window� was uncon-
strained by this consideration [Fig. (1.2)] [Raf96]. However, the cosmological
bounds on hot dark matter close this small window left open by SN 1987A
bounds.

18



Chapter 2

Axion emission from supernovae

In this Chapter we characterize the axion emission from supernovae (SNe).
In Section 2.1 we explain the SN explosion mechanism. In Section 2.2 we
characterize the expected neutrino burst from such an event. Section 2.3 is
a review of the most important features of the SN neutrino signal from SN
1987A. In Section 2.4 we discuss the expected SN axion spectrum.

2.1 Supernova explosion

A star has its origin from a hot and dense cloud of gas bound by the gravity.
Density and temperature grow up until the ignition of the nuclear fusion,
which starts if the proto-star is massive enough (M > 0.08M�, where M� is
the solar mass). As hydrogen is burnt producing helium, the energy released
contrasts the gravitational collapse. The star reaches a stable con�guration
when the gravitational force and the radiation pressure compensate each
other. For massive stars (M > 8M�) the nuclear fusion produces heavy
elements in an �onion� structure with shells of burning elements, an expanded
envelope and a degenerate iron core [Fig. (2.1)]. Iron in the core cannot be
further burnt because it is the most stable nucleus and the only electron
degeneracy pressure contrasts gravity. A typical iron core has a radius R ∼
6000 km and a density ρ ∼ 1010 g / cm3 [Mir16,Raf96]. The last star evolution
stage is determined when the mass of the star core reaches the Chandrasekhar
limit, M ∼ 1.4M�, the maximum mass that can be supported by electron
degeneracy pressure. At this point gravity is no more compensated and
the core would unavoidably collapse. The collapse continues until density
reaches ρ ' 1014 g / cm3, i.e. the nuclear density, and the radius becomes
R ∼ 50 km [Mir16, Raf96]. Then the core becomes incompressible and the
implosion is stopped, generating a shock wave reverting the implosion into an
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Figure 2.1: Di�erent stages of the stellar evolution. Left: hydrogen fusion in the
stellar core. Centre: helium burning phase. Right: shell structure
of a massive star with an iron core and shells of lighter elements
produced during the di�erent phases of nuclear fusion.

explosion. Now we focus our attention on the detailed process of explosion
of core collapse SNe. Simulations show that a core collapse SN explosion is
divided into six phases as shown in Fig. (2.2) [Raf96]:

• Initial phase of the collapse: At the beginning of the collapse, the elec-
tron capture (e−p→ nνe) decreases the number of electrons per baryon
converting electrons into neutrinos that escape freely. The electron
captures reduce the electron degeneracy pressure producing neutron-
rich nuclei. The lower degeneracy pressure accelerates the collapse and
moves the heavier nuclei in the inner of the star, where they decay (via
β decay) subtracting energy at the core.

• Neutrino trapping : When the nuclear matter in the core reaches a den-
sity ρ ∼ 1012 g / cm3, neutrinos are trapped because their di�usion time
is larger than the collapse time. The inner part of the core, the �ho-
mologous core�, collapses at a subsonic velocity because of the lower
compressibility of nuclear matter. In the meantime the outer part ex-
periences a supersonic collapse.

• Bounce and shock formation: The core collapse is decelerated when the
core density is ρ ∼ 1014 g / cm3, the nuclear density. Since the outer
layers continue to fall onto the inner core with supersonic velocity, a
shock wave starts to propagate in the outer core. This bounce invertes
the collapse in an explosion propagating from the interior to the outer
mantle of the SN.

• Shock propagation and νe burst : Simulations show that the shock en-
ergy is not enough to generate the explosion and most of the energy is

20



lost in the heavy nuclei dissociation. The increase in the number of free
protons enhances the electron capture and the neutrinos produced in
this way are trapped in a well de�ned zone, the �neutrinosphere�. The
total energy of this neutrino burst is ∼ 1051 erg.

• Shock stagnation and ν heating : After the bounce, the compact object
at the center of the star grows thanks to the infalling material from
the star. This is the proto-neutron star, that will become a neutron
star if the mass is lower than 25M�, otherwise it becomes a black hole.
Neutrinos need some seconds to escape the dense proto-neutron star
and they deposit energy in the nuclear medium. The proto-neutron
star emits neutrinos, relasing 99% of the total energy of the collapse
in this form. Part of this energy is deposited in the weakened shock
wave via nνe → pe− and pν̄e → ne+. This causes a revitalization of the
shock wave.

• Neutrino cooling and neutrino driven wind : The core energy is lost
via neutrino emission, producing all the three �avor neutrinos. The
external layers expand and create a zone with low density and high
temperature between the proto-neutron star and the shock-wave front.
The high pressure in this zone restarts the explosion, that eventually
end with a SN explosion.
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Figure 2.2: Scheme of the six phases of a core collapse SN.
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2.2 Supernova neutrino signal

The main features of a SN neutrino burst can be understood with
simple considerations [Raf96]. The energy carried away by neutrinos is
approximately given by the binding energy of the proto-neutron star,
approximating it with a sphere we obtain

E ≈ 3

5

GNM
2

R
= 1.60× 1053 erg

(
M

M�

)2(
10 km

R

)
. (2.1)

Neutrinos interact strongly enough to be trapped in the interior of the
proto-neutron star, then in a simpli�ed model they are emitted from
a spherical surface, the �neutrinosphere�, with a radius of 10 − 20 km
depending on the star and neutrinos properties. In the non-degenerate
regime, matter near the proto-neutron star obeys the virial theorem:

2〈Ekin〉 = −〈U〉 ≈ GNM

R
mN ; (2.2)

where mN is the nucleon mass. The temperature can be computed
using Eq. (2.2)

T =
2

3
〈Ekin〉 ≈ 17 MeV ; (2.3)

for M = 1.4M� and R = 15 km. This simple estimate gives the order
of magnitude of the neutrinosphere temperature.

The duration of the neutrino emission depends on the time that neu-
trinos need to escape the proto-neutron star and it is reasonable to
take

∆t ≈ R

c

R

λ
; (2.4)

where R/c is the time to escape in absence of interactions and the
interactions, parametrized by the mean free path λ < R, prolong this
time. A typical neutrino-nucleon weak interaction cross section is σ ∼
10−40 cm2, taking a nucleon density n ∼ 1039 cm−3, we obtain as mean
free path [Vog01]

λ =
1

nσ
∼ 0.1 m ; (2.5)

and an emission time ∆t ∼ O(10 s) for 30 MeV neutrinos. These esti-
mates can be improved considering that νe and ν̄e interact with matter
via charged and neutral current interactions because they have an en-
ergy greater than the threshold for ν̄ep → ne+ and νen → pe−. On
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the other hand, νµ and ντ do not have enough energy to produce re-
spectively muons and tauons, then their interactions are only neutral
current interactions, weaker than νe charged current interactions. This
implies that νµ and ντ decouple in the inner of the star, at higher
temperature. The mean energies are the following [Mir16,Raf96]:

〈Eνe〉 = 10− 12 MeV ;

〈Eν̄e〉 = 12− 15 MeV ;

〈Eνx〉 = 15− 18 MeV ;

(2.6)

where νx ≡ νµ, ντ , ν̄µ, ν̄τ (sometimes will be important to distinguish
between νx ≡ νµ, ντ and ν̄x ≡ ν̄µ, ν̄τ ). The di�erence between νe and ν̄e
is due to their decoupling processes

νe n→ p e− ν̄e p→ n e+ .

Since there are fewer protons than neutrons, the anti-neutrinos decou-
ple at higher temperature.

A SN can be roughly considered as a blackbody that cools via neutrino
emission [Raf96]. Indeed, the neutrino energy distribution is well ap-
proximated with a quasi-thermal distribution with the temperature of
the neutrinosphere. A simple parametrization of the neutrino energy
distribution, based on numerical simulations is [Kei02,Mir05]

f(E) =
(1 + α)1+α

Γ(1 + α)〈E〉

(
E

〈E〉

)α
exp

[
−(1 + α)

E

〈E〉

]
;

dN

dE
=

L0

〈E〉
f(E) ;

α =
2〈E〉2 − 〈E2〉
〈E2〉 − 〈E〉2

;

(2.7)

where L0 is the time-integrated luminosity, α is a pinching parameter
and for α = 2 we recover the blackbody spectrum with a tempera-
ture T = 〈E〉/3. This energy distribution [Fig. (2.3)], the mean en-
ergy [Fig. (2.4)] and the number of neutrinos emitted N0 = L0/〈E〉
[Fig. (2.5)] are obtained from a simulation of a 18M� SN.

This simulation developed by the �Wroclaw Supernova Project� [Fis] is
based on a spherically symmetric core-collapse SN model, the AGILE-
BOLTZTRAN model. The dynamics is determined by general relativis-
tic neutrino radiation hydrodynamics with angle and energy-dependent
three �avor Boltzmann neutrino transport.
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Figure 2.3: Neutrino energy distribution from numerical simulations of a 18M�
SN at post-bounce time t = 1 s. The three lines represents the di�er-
ent neutrino �avors as shown in the legend.

Figure 2.4: Neutrinos mean energy from numerical simulations of a 18M� SN for
t > 0.5 s. The three lines represents the di�erent neutrino �avors as
shown in the legend.
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Figure 2.5: Number of neutrinos from numerical simulations of a 18M� SN for
t > 0.5 s. The three lines represents the di�erent neutrino �avors as
shown in the legend.
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Table 2.1: Best �t parameters for the time-integrated neutrino �uxes in the time
window 0.7− 10 s.

Species α N0 (×1056) 〈E〉
νe 2.08 8.42 6.91
νe 1.56 7.37 9.41
νx 1.33 9.76 9.38

In this Thesis we will be mostly interested in the cooling phase, where
axion e�ects are more relevant. Therefore we integrate the neutrino
�uxes in the time window 0.7−10 s. These can be �tted with Eq. (2.7)
and time-independent parameters α, N0 and 〈E〉 [Tab. (2.1)]. In Fig. (2.6)
we show the time-integrated �uxes.
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Figure 2.6: Time-integrated neutrino �uxes (t ∈ [0.7; 10] s).
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2.3 SN 1987A neutrinos

Supernova neutrinos have been observed for the �rst and unique time
from supernova SN 1987A in the Large Magellanic Cloud, a small satel-
lite galaxy of the Milky Way at a distance of 51.4 kpc. This event was
useful to test our knowledge about SNe and neutrinos. The SN 1987A
progenitor was Sanduleak −69

◦
202, a blue supergiant with a mass of

∼ 20M�. The neutrino burst of this SN was detected by di�erent un-
derground detectors on 23th February 1987 [Fig. (2.7)] and the subse-
quent optical signal was seen three hours later. The most important de-
tections came from the Kamiokande II (KII) water Cherenkov detector,
originally planned to search for proton decay and the Irvine-Michigan-
Brookhaven (IMB). In particular KII detected 11 events while IMB 8
events. A smaller number of events were detected also at Baksan Scin-
tillator Telescope (BST). The detection channel of SN 1987A neutrinos
was the inverse beta decay (IBD) ν̄ep → ne+. SN 1987A con�rmed
that the gravitational binding energy is carried out by neutrinos with
a characteristic energy of 〈E〉 ∼ 10 MeV. Moreover the neutrino burst
duration, a few seconds, permits to estimate a neutrino luminosity of
Lν ∼ 1052 erg / s.
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Figure 2.7: SN 1987A neutrino signal at KII and IMB.
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2.4 Axion production

To study the impact of an additional energy loss channel given by ax-
ions, we have to calculate the axion production rate in a SN enviroment.
The only relevant axion production process is the axion bremsstrahlung
NN → NNa. This process is induced by the axion-nucleon interaction,
determined by the following Lagrangian [Raf96]

LaN =
∑
i=p,n

Ci
2fa

Ψ̄iγ
µγ5Ψi∂µa ; (2.8)

where Ci is the axion-nucleon coupling constant and Ψi is the nucleon
spinor. At the lowest order, the nucleons exchange a pion, this is the
One Pion Exchange (OPE) approximation.

N1

N2

N3

N4

a

π

The pion-nucleus interaction Lagrangian is similar to the axion-nucleus
one [Raf96]

LπN = 2mN
fij
mπ

Ψ̄iγ
5Ψjπ ; (2.9)

where mN is the nucleon mass and mπ is the pion mass. Therefore,
the matrix element of the nucleon bremsstrahlung can be computed
using the Lagrangians in Eq. (2.8)-(2.9). The matrix element in the
non-relativistic limit is [Raf96]∑

sf

|M|2 =
16(4π)3α2

παa
3m2

N

[(
k2

k2 +m2
π

)2

(
l2

l2 +m2
π

)2

+
k2l2 − 3(k · l)2

(k2 +m2
π)(l2 +m2

π)

]
;

k = p2 − p4 ;

l = p2 − p3 ;

αa =

(
CNmN

fa

)2
1

4π
;

απ ≈ 15 .

(2.10)
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The momentum-dependent part in the matrix element in Eq. (2.10)
can be ignored introducing a small error. Therefore we obtain∑

sf

|M|2 =
16(4π)3α2

παa
3m2

N

. (2.11)

Axions modify the stellar energy-loss in di�erent ways, depending on
the axion-nucleon coupling. For instance, Fig. (2.8) shows that the
neutrino burst duration could be reduced by axions. Only axions that
interact too strongly or too feebly with matter do not a�ect the neu-
trino burst duration. Axions can be classi�ed according to their inter-
action strength. Fig. (2.8) shows that axions with a coupling constant
gaN in the range [10−11, 10−8] interact so weakly that freely escape from
the star, stealing energy from SN core. As a consequence their emission
would signi�cantly reduce the duration of the neutrino burst since they
carry out e�ciently energy from the SN core. This means that axions
in this regime, the free-streaming regime, have a strong impact on the
stellar evolution. Axions with gaN > 10−7 are in the trapping regime.
In this regime, axions cannot escape from the star and do not con-
tribute to the energy-loss e�ciently. However, in this case they would
be emitted from an �axionsphere� (analogous to the neutrinosphere) as
a burst and produce a possible signal in an underground detector.

In the rest of this Thesis we assume that gaN = CNmN/fa, where mN

is the nucleon mass and CN , N = n, p is a model-dependent factor.
Furthermore, the trapping regime is characterized by fa = 106 GeV
and then gap = gan = 10−6; the free-streaming regime is characterized
by gap = 9× 10−10 and gan = 0.

2.4.1 Free-streaming regime

In the free-streaming regime axions interact weakly with matter and
escape freely subtracting energy to the SN. In this regime axions are
emitted from the whole SN volume. The energy-loss rate is obtained
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Figure 2.8: Duration of the neutrino burst as a function of the axion-nucleon
coupling constant. (Figure taken from [Raf96]).

using the matrix element in Eq. (2.10) as shown in Appendix A.1-A.2:

Qa =
αanBΓσT

3

4πm2
N

ˆ +∞

0

dx x2s(x)e−x ;

Γσ = 4
√
πα2

πnBT
1/2m

−5/2
N ;

s(x) = Y 2
nC

2
n[s0(x)− sk·l(x)] + Y 2

p C
2
p [s0(x)− sk·l(x)]+

+
YnYp

3

{
[7(Cn + Cp)

2 + 5(Cn − Cp)2]s0(x)+

−[6(Cn + Cp)
2 + 2(Cn − Cp)2]sk·l(x)

}
;

(2.12)

where Yp and Yn are the nucleon number per baryon and

s0(x) =

ˆ ∞
0

dv e−v
√
v(x+ v) ;

sk·l(x) =

ˆ ∞
0

dv e−v
x2

2(2v + x)
ln

(√
v + x+

√
v√

v + x−
√
v

)
.

(2.13)

The electron number per baryon, Ye, can be used to set Yp = Ye and
Yn = 1−Ye. To simplify the calculations we need the following approx-
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imations that are accurate at the 15− 20%

xe−xs0(x) ' 1.4x1.25e−x ;

xe−xsk·l(x) ' 0.28x2.2e−1.1x ;

xe−x[s0(x)− sk·l(x)] ' 1.15x1.05e−1.05x .

(2.14)

We used a simulation of a perturbed 18M� SN in presence of axions
with gap = 9× 10−10 and gan = 0 [Fis]. Fig. (2.9)-(2.10) show the time
evolution of the neutrino mean energy and neutrino emission rate. For
the axion emission rate we obtain

dNax

dtdE
=

C

2Teff

g2
aN

(
E

Teff

)
e−E/Teff ; (2.15)

where

C = 6.864× 1083t−6.93e−17.53t−0.49

s−1 ;

Teff = 2310 e−4.3t0.273

t1.353 MeV ;

t ∈ [0.5; 15] .

(2.16)

Fig. (2.11) shows the neutrino energy distribution in presence of free
streaming axions. Fig. (2.12) shows the axion spectrum of Eq. (2.15).

The energy-loss rate [Eq. (2.12)] has the following dependence [Ap-
pendix A.2]:

Qa ∼ (2.06Y 2
n + 10.4YnYp)C

2
n + (2.06Y 2

p + 10.4YnYp)C
2
p+

+ 0.625YnYpCnCp ;
(2.17)

that can be integrated over the stellar model. The time-integrated
luminosity is

L ∼ g2
an + 0.6g2

ap + 0.03gangap ; (2.18)

and the number of emitted axions is

N ∼ g2
an + 0.6g2

ap + 0.07gangap . (2.19)

Eq. (2.17)-(2.19) are obtained using a SN model perturbed by axions
interacting only with protons. However we expect that Eq. (2.17)-
(2.19) do not depend from the axion model because axion interactions
cannot change the nucleon abundance.

The neutrino and axion �uxes in this model of perturbed SN can be in-
tegrated from 0.7 s to 10 s and �tted with Eq. (2.7). In Fig. (2.13)-(2.14)
we show the numerical time-integrated �uxes and the �t parameters are
shown in Tab. (2.2).
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Figure 2.9: Time evolution of the neutrino mean energies. The axion couplings
are gap = gan = 0 (black lines) and gap = 9 × 10−10, gan = 0 (red
lines).
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Figure 2.10: Time evolution of the neutrino emission rates. The axion couplings
are gap = gan = 0 (black lines) and gap = 9 × 10−10, gan = 0 (red
lines).
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Figure 2.11: Neutrino energy distribution for gap = gan = 0 (black lines) and
gap = 9× 10−10 and gan = 0 (red lines) at post-bounce time t = 5 s.
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Figure 2.12: Axion energy distribution for gap = 9× 10−10 and gan = 0 at di�er-
ent post-bounce times.
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Figure 2.13: Time-integrated neutrino �uxes (t ∈ [0.7; 10] s) for gap = gan = 0
(black line) and gap = 9× 10−10, gan = 0 (red line).
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Figure 2.14: Time-integrated axion �ux for gap = 9 × 10−10 and gan = 0 (t ∈
[0.7; 10] s).
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Table 2.2: Best �t parameters for the time-integrated neutrino and axion �uxes
(t ∈ [0.7; 10] s), gan = 0 and gap = 9× 10−10.

Species α N0 (×1056) 〈E〉
νe 2.12 6.88 6.55
νe 1.48 5.18 9.01
νx 1.31 7.09 8.81
a 0.97 250.30 60.63

2.4.2 Trapping regime

The emission of trapped axions can be seen as a quasi-thermal emission
from a surface rather than from the entire volume of the star [Raf96].
To determine the radius of this surface, the �axionsphere�, we have
to de�ne the optical depth of a medium. Then, the axion spectrum
can be approximated with a blackbody spectrum at the axionsphere
temperature. The mean opacity is de�ned in terms of x = ω/T as
[Raf96] [Appendix A.3]

k =

(
CN
2fa

)2
Γσ
mNT

k̂ ;

k̂−1 =
15

8π4

ˆ ∞
0

dx
x4e2x

(ex − 1)3

2x

s(x)
;

s(x) = 4

ˆ
du dv u2v2e|x|−u

2

δ(u2 − v2 − |x|) =

=

ˆ ∞
0

dy e−y
(
|x|y + y2

)1/2 ≈
√

1 + |x|π
4

;

(2.20)

valid in the non-degenerate regime. We can introduce the optical depth
[Raf96]

τ(r) =

ˆ ∞
r

dr kaρ . (2.21)

Solving the equation τ(rax) = 2/3 we determine the radius of the ax-
ionsphere rax. The density and temperature pro�les from the 18M�
SN simulation for di�erent times are plotted in Fig. (2.15)-(2.16). The
calculated radius and temperature of the axionsphere are shown in
Fig. (2.17)-(2.18). Now we can determine the axion luminosity by
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means of the Stefan's law

L =
π2

120
4πr2

axT
4(rax) ; (2.22)

and the axion energy distribution is given by a blackbody spectrum
[Fig. (2.19)]

f(E) =
1

2T 3
axζ(3)

E2

eE/Tax − 1
; (2.23)

where Tax is the temperature of the axionsphere and ζ is the zeta Rie-
mann function. The rate of emitted axions in the SN explosion is given
by L/〈E〉, where 〈E〉 = 2.7Tax for a blackbody spectrum [Fig. (2.20)].

In order to compare the axion spectrum with the neutrino one, we can
�t the time-integrated axion spectrum with Eq. (2.7). In Fig. (2.21) we
show the numerical time-integrated �ux and the �t with the parameters
α = 1.18, 〈E〉 = 11.19 MeV and N0 = 22.59× 1056.

38



Figure 2.15: Supernova matter density at di�erent post-bounce times for a 18M�
progenitor.

Figure 2.16: Supernova temperature at di�erent post-bounce times for a 18M�
progenitor.
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Figure 2.17: Radius of the axionsphere for di�erent couplings.

Figure 2.18: Temperature of the axionsphere for di�erent couplings.
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Figure 2.19: Axion spectrum for di�erent couplings at post-bounce time t = 2 s.
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Figure 2.20: Rate of emitted axions for di�erent couplings.
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Figure 2.21: Time-integrated axion �ux for gap = gan = 10−6 (from 0.7 s to 10 s).
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Chapter 3

Axion-oxygen cross section

A galactic SN could produce an axion signal in water Cherenkov de-
tectors thanks to the absorption of axions by the oxygen nuclei. Engel
et al. elaborated these ideas in a seminal paper [Eng90]. We repeat
this calculation updating it with the state-of-the-art nuclear models. In
this Chapter we illustrate the calculation of the axion-oxygen absorp-
tion cross section. In Section 3.1 we recall the di�erence between the
derivative and the pseudoscalar axion-fermion interaction Lagrangian.
In Section 3.2 we compute the cross section for the axion nuclear ab-
sorption. In Section 3.3 we explicit the matrix element for the cross
section calculation, and in Section 3.4 we present the nuclear model
used. In conclusion, Section 3.5 deals with the energy levels excited by
axion absorption and neutrino neutral current nuclear interactions and
their radiative decays.

3.1 Axion-fermion interaction Lagrangian

In this section we will analyze the di�erences between the derivative
and non-derivative coupling for axion-fermion interactions [Raf96]. As
we saw in Chap. 1, in every axion model, the axion degree of freedom
is enclosed in an additional Higgs �eld. In general the Lagrangian for
a fermion �eld Ψ and a Higgs �eld Φ is

L = iΨ̄γµ∂µΨ + ∂µΦ†∂µΦ− V (|Φ|)− hΨ̄LΨRΦ ;

ΨL =
1

2
(1− γ5)Ψ ;

ΨR =
1

2
(1 + γ5)Ψ .

(3.1)
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The Lagrangian in Eq. (3.1) is invariant under the axial U(1)PQ trans-
formation

Φ→ eiαΦ

ΨL → eiα/2ΨL

ΨR → e−iα/2ΨR .

The Higgs potential has a minimum for |Φ| = fa/
√

2 and the ground
state is

〈Φ〉 =
fa√

2
eiα0 ; (3.2)

for a �xed α0 and this vacuum con�guration is no more invariant under
U(1)PQ. Near the minimum we can write the Higgs �eld as

Φ =
fa + ρ√

2
eia/fa ; (3.3)

where ρ is the radial component of the Higgs �eld and the Lagrangian
in Eq. (3.1) at low energy becomes

L = iΨ̄γµ∂µΨ +
1

2
∂µa∂

µa+ Lint ;

Lint = −mΨ̄eiaγ
5/faΨ ;

(3.4)

neglecting the large mass �eld ρ. Expanding the exponential in the
interaction Lagrangian Lint in Eq. (3.4) we obtain in�nite interaction
terms. At the lowest order we �nd the pseudoscalar coupling [Raf96]

Lint = −im
fa
aΨ̄γ5Ψ + ... . (3.5)

We can also proceed in a di�erent way. We rede�ne the fermion �eld
as

Ψ→ e−iaγ
5/2faΨ ;

Ψ̄→ Ψ̄e−iaγ
5/2fa ;

(3.6)

and the Lagrangian in Eq. (3.4) becomes

L = iΨ̄e−iaγ
5/2faγµ

(
e−iaγ

5/2fa∂µΨ− i

2fa
e−iaγ

5/2fa∂µaγ
5Ψ

)
+

+
1

2
∂µa∂

µa−mΨ̄Ψ =

= Ψ̄(iγµ∂µ −m)Ψ +
1

2
∂µa∂

µa+
1

2fa
Ψ̄γµγ5Ψ∂µa .

(3.7)

44



The Lagrangian in Eq. (3.4) loses the exponential coupling in the mass
term, acquiring an exact derivative coupling coming from the kinetic
term [Raf96]

Lint =
1

2fa
Ψ̄γµγ5Ψ∂µa . (3.8)

Since pions are Goldstone bosons, their interactions have a form similar
to that of the axions. In the process pp → ppπ0 the cross section ob-
tained by using the derivative Lagrangian is in accord to experimental
data. In fact, both the interaction Lagrangians give the same results
except when two Goldstone bosons are attached to one fermion line as
in the diagram below

p

p

p

p

π0

π

In this case one must use at least a derivative Lagrangian [Eq. (3.8)]
for one Goldstone boson [Raf96].

3.2 Axion-nucleus scattering cross section

The description of the absorption of an axion by an atomic nucleus is
a process which implies the interaction of an elementary particle with
a many-body system. We describe this process by considering �rst the
interaction between the axion and a single nucleon, which we consider
a structureless particle, and, in a second step, we consider the nucleus
a many-nucleon system. Due to the low mass of the axion, we assume
that it is massless. First of all we consider the following axion-nucleus
interaction Lagrangian [Eng90]

L =
1

2fa
Ψ̄Nγ

µγ5(C0 + C1τ 3)ΨN∂µa ;

C0 =
1

2
(Cp + Cn) ;

C1 =
1

2
(Cp − Cn) ;

ΨN =

(
p
n

)
;

(3.9)
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where τ 3 is a Pauli matrix and Cp,n are the proton and neutron cou-
pling constants. From this Lagrangian [Eq. (3.9)] we can compute the
Hamiltonian:

∂L
∂(∂0a)

=
1

2fa
Ψ̄Nγ

0γ5(C0 + C1τ 3)ΨN ;

∂L
∂(∂0Ψ)

= 0 ;

∂L
∂(∂0Ψ̄)

= 0 ;

(3.10)

and then

H =
∂L

∂(∂0a)
∂0a− L =

=
1

2fa

(
Ψ̄Nγ

0γ5(C0 + C1τ 3)ΨN∂0a− Ψ̄Nγ
µγ5(C0 + C1τ 3)ΨN∂µa

)
=

= − 1

2fa
Ψ̄Nγ

iγ5(C0 + C1τ 3)ΨN∂ia ;

(3.11)

where greek indices vary from 0 to 3 and the latin ones from 1 to 3.
The initial state is formed by an axion of momentum p and the nucleus
in its ground state. The axion state is |p〉 and the initial nucleus state
is indicated as |α〉. In the �nal state the axion is absorbed and the
nucleus is in an excited state. The state without the axion is |0〉 and
the �nal nucleus state is |β〉. Both the nuclear states |α〉 and |β〉 are
energy and angular momentum eigenstates. The transition amplitude
between these states is

Mfi = 〈f |
(ˆ

d3rdtHfi

)
|i〉 = − 1

2fa

ˆ
d3rdt〈β|J i(r, t)|α〉〈0|∂ia(r, t)|p〉 ;

(3.12)
where

J i(r, t) = Ψ̄N(r, t)γiγ5(C0 + C1τ 3)ΨN(r, t) ; (3.13)

is the hadronic current. The time dependence of the hadronic current
[Eq. (3.13)] can be isolated by expressing the current in the Heisenberg
representation

〈β|J i(r, t)|α〉 = 〈β|eiHtJ i(r, 0)e−iHt|α〉 = ei(Eβ−Eα)t〈β|J i(r)|α〉 .
(3.14)
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The axion current can be computed expanding the axion �eld in plane
waves1:

a(r, t) =

ˆ
d3q√
V

1√
2Eq

(
e−iEqt+iq·raq + eiEqt−iq·ra†q

)
;

〈0|∂ia(r, t)|p〉 = 〈0|∂ia(r, t)a†p|0〉 =
e−iEpt+ip·r√

2EpV
ipi ;

(3.15)

where V is a �nite normalization volume; Eq = |q|; a†q and aq are the
creation and destruction operators of an axion state of momentum q.
Using Eq. (3.12), Eq. (3.14) and Eq. (3.15) we obtain

Mfi = − 1

2fa

ˆ
dt ei∆Et

ˆ
d3r√
2EpV

〈β|J i(r)|α〉∂ieip·r =

= − 1

2fa
2πδ(∆E)

ˆ
d3r√
2EpV

〈β|J i(r)|α〉∂ieip·r ;

∆E = Eβ − Eα − Ep .

(3.16)

The plane wave in Eq. (3.16) can be expanded in spherical harmonics
[Mes67]

eip·r = 4π
∞∑
j=0

l∑
m=−l

ijjj(qr)Yj,m
∗(Ωp)Yj,m(Ωr) ; (3.17)

where the two spherical harmonics depend on the angular coordinate
of the p and r vectors. Without losing generality, we can select the z
axis along the p direction. Therefore

Yj,m
∗(0) =

[
2j + 1

4π

]1/2

δm,0 . (3.18)

Then Eq. (3.17) becomes

eip·r =
∞∑
j=0

ij
√

4π(2j + 1)jj(pr)Yj,0(Ω) ; (3.19)

1In the following we use the �nite volume normalization. The integral representation

of the Dirac delta will be written as

δ3(r− r0) =
1

V

ˆ
d3p eip·(r−r0) .

The transition to V →∞ is equivalent to the substitution V → (2π)3.
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where we de�ned Ω = Ωr and then

∂ie
ip·r =

∞∑
j=0

ij
√

4π(2j + 1)∂i(jj(pr)Yj,0(Ω)) . (3.20)

The matrix element [Eq. (3.12)] can be written as

Mfi = −2πδ(∆E)
1

2fa
√

2EpV
∞∑
j=0

ij
√

4π(2j + 1)Ep

ˆ
d3r

1

p
∂i(jj(pr)Yj,0(Ω))〈β|J i(r)|α〉 .

(3.21)

In Eq. (3.21) we have multiplied and divided by p, using the hypothesis
of massless axion (p = Ep). In order to verify our result [Eq. (3.16)] we
repeat this calculation using the equivalent non-derivative coupling

H = i
m

fa
Ψ̄Nγ

5(C0 + C1τ 3)ΨNa . (3.22)

Following the steps used to arrive up to Eq. (3.21) we obtain the ex-
pression of the matrix element

Mfi = 2πδ(∆E)
im

fa
√

2EpV∑
j

ij
√

4π(2j + 1)Ep

ˆ
d3r

1

p
jj(pr)Yj,0(Ω)〈β|P (r)|α〉 ;

(3.23)

where
P (r) = Ψ̄Nγ

5(C0 + C1τ 3)ΨN . (3.24)

Integrating by parts Eq. (3.21) and using that

∂µJ
µ(r) = ∂iJ

i(r) = 2imP (r) ; (3.25)

we obtain the same expression as Eq. (3.23).

3.3 Single particle transitions

The nuclear states are eigenstates of angular momentum, energy and
parity. The ground state of the 16Onucleus is characterized by angular
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momentum and parity 0+. The interaction Lagrangian [Eq. (3.9)] is
symmetric under parity, which means that in this process parity is
conserved. In the initial state the parity is +1 for the nucleon, −1 for
the axion and (−1)j for the relative angular momentum. In the �nal
state, the nucleus will be excited into a state with angular momentum
j and parity (−1)j+1 and those states are called �unnatural� states.
Therefore, after the axion absorption, the �nal nuclear state has the
angular momentum of the incident axion j and parity determined by
the conservation law (−1)j+1. We can now compute the total cross
section for the axion-nucleus absorption. The matrix element squared
in Eq. (3.21) with |α〉 = |Ji,Mi〉 and |β〉 = |Jf ,Mf〉 is

|Mfi|2 = 2πδ(∆E)T
Ep

8f 2
aV

∣∣∣∣∣
∞∑
j=0

ij
√

4π(2j + 1)〈Jf ,Mf |Lj,0|Ji,Mi〉

∣∣∣∣∣
2

;

(3.26)
where we de�ned the multipole operator [Sch80]

Lj,0 =
i

p

ˆ
d3r∂i(jj(pr)Yj,0(Ω))J i(r) . (3.27)

The factor T in Eq. (3.26) is the process time duration and it comes
from the square of the Dirac delta:

δ(∆E) = lim
T→∞

1

2π

ˆ T/2

−T/2
dt e−i∆Et ;

[δ(∆E)]2 = δ(∆E) lim
T→∞

1

2π

ˆ T/2

−T/2
dt e−i∆Et =

= δ(∆E) lim
T→∞

1

2π

ˆ T/2

−T/2
dt =

T

2π
δ(∆E) ;

(3.28)

where T → ∞, but it is not explicitly written in the last step. From
the Wigner-Eckart theorem for spherical operators, with the convention
used in [Sch80]:

〈Jf ,Mf |Tl,m|Ji,Mi〉 = (−1)Jf−Mf

(
Jf l Ji
−Mf m Mi

)
〈Jf ||Tl,m||Ji〉 .

(3.29)
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Squaring the matrix element, mediating over the inital states and sum-
ming over the �nal states, we obtain [Sch80]

1

2Ji + 1

∑
Mi,Mf

|〈Jf ,Mf |Tl,m|Ji,Mi〉|2 =

=
|〈Jf ||Tl,m||Ji〉|2

2Ji + 1

∑
Mi,Mf

(
Jf l Ji
−Mf m Mi

)(
Jf l′ Ji
−Mf m′ Mi

)
=

=δl,l′δm,m′
|〈Jf ||Tl,m||Ji〉|2

(2l + 1)(2Ji + 1)
.

(3.30)

Therefore Eq. (3.26) with the ground state of 16Oas initial state be-
comes

|Mfi|2 =
π2EpTδ(∆E)

f 2
aV

|〈JP ||Lj,0||0+〉|2 ; (3.31)

where J is the axion angular momentum, P is the �nal state parity
and JP identi�es the �nal nuclear state. The total cross section is

σ =

ˆ
dE

dρ

dE

|Mfi|2V
T

; (3.32)

where dρ/dE is the �nal states density. Ignoring the nucleus recoil,
dρ/dE = 4 for the two isospin and spin nucleon possible states. Then
we arrive at the following cross section

σ =
4π2Ep
f 2
a

|〈JP ||Lj,0||0+〉|2 . (3.33)

The cross section obtained from Eq. (3.23) is

σ =
4π2Ep
f 2
a

|〈jP ||Mj,0||0+〉|2 ; (3.34)

de�ning [Sch80]

Mj,0 =
2m

p

ˆ
d3rjj(pr)Yj,0(Ω)P (r) . (3.35)

Using Eq. (3.25) we see that Eq. (3.35) and Eq. (3.34) are equivalent
to Eq. (3.33).

The cross section in Eq. (3.33) contains a matrix element between the
nuclear states |0+〉 and |JP 〉. In a simple model we can imagine that

50



the axion is absorbed by a nucleon below the Fermi energy, and then it
is excited in a higher level. With this simpli�cation, the �macroscopic�
reduced matrix element 〈JP ||Lj,0||0+〉 can be calculated from the �mi-
croscopic� matrix element 〈jf ||Lj,0||ji〉, where ji,f is the nucleon angular
momentum. The great simpli�cation is that we reduced a many-body
system to a calculation of single particle matrix elements. The single
particle wavefunction is

φi(r) = Rt
nlj(r)

∑
µsz

〈lµ 1/2 sz|jm〉Ylµ(Ω)χszχt ; (3.36)

where Rt
nlj(r) is the radial wavefunction; χsz and χt are Pauli spinors

for the third component of spin and isospin respectively.

To compute explicitly the cross section in Eq. (3.33) we must evaluate
the expression of the hadronic current

j(r, t) = Ψ̄Nγγ
5(C0 + C1τ 3)ΨN . (3.37)

We compute the matrix element of the current in Eq. (3.37) between
two free nucleon states with momentum pi,f , spin si,f and mass m.
Considering a proton, the hadron current is

〈pf , sf |j|pi, si〉 =
Cp
V

√
Epf +m

2Epf

√
Epi +m

2Epi
ū(pf , sf )γγ

5u(pi, si) ;

u(p, s) =

(
χs

σ·p
E+m

χs

)
;

χ+1/2 =

(
1
0

)
;

χ−1/2 =

(
0
1

)
;

(3.38)

where the spinors χs refer to the spin space. The nucleons mass is
about 1 GeV and their average kinetic energy in a nucleus is about
20 MeV, therefore we can apply the non-relativistic approximation. At
the lowest order (|p| � E = m)

〈pf , sf |j|pi, si〉 =
Cp
V
ū(pf )γγ

5u(pi) ;

ū(pf )γ
iγ5u(pi) =

(
χsf † 0

)( 0 σi

−σi 0

)(
0 1
1 0

)(
χsi

0

)
=

= χsf †σiχsi .

(3.39)
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In general, for every isospin state, introducing the isospin spinors χt

〈pf , sf , tf |j|pi, si, ti〉 =
1

V
χtf †(C0 + C1τ 3)χtiχsf †σχsi ;

χ+1/2 =

(
1
0

)
;

χ−1/2 =

(
0
1

)
.

(3.40)

In the r-space, the current is

j(r) =
1

V
(C0 + C1τ 3)

ˆ
d3qσe−iq(r−ri) = (C0 + C1τ 3)σδ3(r− ri) ;

(3.41)
where ri is the position of the i-th nucleon. Once obtained the hadronic
current operator in the non-relativistic limit [Eq. (3.41)], we can com-
pute the multipole operator in Eq. (3.27) to eventually calculate the
reduced matrix element in Eq. (3.33). Then, the operator in Eq. (3.27)
becomes

Lj,0 =
i

p
(C0 + C1τ 3)

ˆ
d3rσ · ∇(jj(pr)Yj,0(Ω))δ3(r− ri) =

=
i

p
(C0 + C1τ 3)σ · ∇(jj(pri)Yj,0(Ω)) .

(3.42)

The operator in Eq. (3.42) can be rewritten in terms of the vector
spherical harmonics [Sch80]

Yl,j,m(Ω) =
∑
nq

〈ln1q|jm〉Yl,n(Ω)eq ;

e±1 = ∓ 1√
2

(ux ± iuy) ;

e0 = uz ;

(3.43)

where ux,y,z are the unit vectors along the cartesian axes. We obtain

∇(jj(pr)Yj,0(Ω)) =

= p

[√
j + 1

2j + 1
jj+1(pr)Yj+1,j,0 +

√
j

2j + 1
jj−1(pr)Yj−1,j,0

]
;

(3.44)
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and

〈jp||jj+1(pr)Yj,j+1,0 · σ||jh〉 =

= (−1)j+jh+ 3
2

√
(2jp + 1)(2jh + 1)

4π
ξ(lp + lh + j + 1)

(
jp jh j

1/2 −1/2 0

)
[
χp + χh + j + 1√

j + 1

]ˆ
dr r2jj+1(pr)R∗pRh ;

(3.45)

〈jp||jj−1(pr)Yj,j−1,0 · σ||jh〉 =

= (−1)j+jh+ 3
2

√
(2jp + 1)(2jh + 1)

4π
ξ(lp + lh + j + 1)

(
jp jh j

1/2 −1/2 0

)
[
χp + χh − j√

j

]ˆ
dr r2jj−1(pr)R∗pRh ;

(3.46)

where R is the nucleon radial wavefunction as de�ned in Eq. (3.36);
ξ(L) is 1 for even L, 0 otherwise; and

χ = (l − j)(2j + 1) ;

|jp − jh| ≤ j ≤ |jp + jh| .

The matrix element can also be computed from the pseudoscalar La-
grangian [Eq. (3.35)]. The explicit expression is

〈pf , sf |P |pi, si〉 =
Cp
V

√
Epf +m

2Epf

√
Epi +m

2Epi
ū(pf , sf )γ

5u(pi, si) ;

(3.47)
at the zeroth order of the non-relativistic approximation

〈pf , sf |P |pi, si〉 =
Cp
V
ū(pf )γ

5u(pi) ;

ū(pf )γ
5u(pi) =

(
χsf † 0

)( 1 0
0 −1

)(
0 1
1 0

)(
χsi

0

)
= 0 .

(3.48)

Since the matrix element in Eq. (3.48) is zero, we expand to the �rst
order in |p|/m

ū(pf )γ
5u(pi) =

(
χsf † χsf † σ·pf

2m

)( 1 0
0 −1

)(
0 1
1 0

)(
χsi

σ·pi

2m
χsi

)
=

=
1

2m
χ†sfσχsi · (pi − pf ) ;

(3.49)
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and then

〈pf , sf , tf |P |pi, si, ti〉 =
1

2mV
χtf †(C0 + C1τ 3)χtiχsf †σχsi · (pi − pf ) .

(3.50)
In the r-space

P (r) =
1

2mV
(C0 + C1τ 3)

ˆ
d3qeiq(r−ri)σ · q =

= − i

2m
(C0 + C1τ 3)σ · ∇(δ3(r− ri)) ;

(3.51)

where q = pi − pf . Inserting Eq. (3.51) in Eq. (3.35) and integrating
by parts we obtain the same resuts as Eq. (3.42):

Ml,0 = − i
p

(C0 + C1τ 3)σ ·
ˆ
d3r∇(δ3(r− ri))jl(pr)Yl,0(Ω) =

=
i

p
(C0 + C1τ 3)σ · ∇(jl(pri)Yl,0(Ω)) .

(3.52)

3.4 Nuclear models

In order to calculate the cross section, we need to explicit the matrix
element in Eq. (3.33). In a mean �eld approximation all the states
below the Fermi energy are occupied. Excited states are obtained by
moving a nucleon to a state above the Fermi energy. This model cannot
account for a collective behaviour. Hovewer, the nucleus is a many
body system where nucleons collective excitations are relevant. For this
reason we used a description of the excitation spectrum which consider
both collective and single particle excited states. This approach is
known as Random Phase Approximation (RPA) [Sch80]. In spite of
the complexity of this system, we can describe nuclear con�gurations
as a linear combination of particle-hole states. We are interested in the
16Onucleus, a closed shell nucleus [Fig. (3.1)].

The Schrödinger equation can be written as

H|ν〉 = ω|ν〉 ; (3.53)

where H is the many-body Hamiltonian, |ν〉 is an excited state and
|0〉 the ground state. The excited states of the system are obtained by
acting with the creation operator Q†ν on the ground state

Q†ν |0〉 = |ν〉 ; (3.54)
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Figure 3.1: Oxygen nucleons ground state con�guration.

and the ground state |0〉 is de�ned as

Qν |0〉 = 0 . (3.55)

In our approximation, the operator in Eq. (3.54) takes contributions
only from one particle-one hole transitions, ignoring the higher order
transitions. In the RPA the creation operator is a linear combination
of particle-hole ap, ah operators with coe�cients Xν

ph and Y
ν
ph [Sch80]

Q†ν =
∑
ph

(
Xν
pha
†
pah − Y ν

pha
†
hap

)
; (3.56)

where the subscripts p, h indicate the quantum numbers of particle
and hole states. The many-body Hamiltonian containing two-body
interactions only can be written as [Sch80]:

H =
∑
α

εαa
†
αaα −

1

2

∑
ijij

V̄ijij +
1

4

∑
αβα′β′

V̄αβα′β′N(a†αa
†
βaβ′aα′) ; (3.57)

where N indicates the normal ordering, the pedices i, j indicate only
hole states (i.e. above the Fermi level) and the matrix element of the
two-body interaction is

Vαβγδ =

ˆ
d3r1d

3r2 φ
∗
α(r1)φ∗β(r2)v(r1, r2)φγ(r1)φδ(r2) ;

V̄ijij = Vijij − Vijji .
(3.58)

The single particle energy εα is de�ned as

εα =

ˆ
d3r φ∗α(r)

(
− 1

2m
∇2

)
φα(r) +

∑
i

V̄αiαi . (3.59)

55



In the RPA theory the Xν
ph and Y ν

ph coe�cients satisfy the following
equations [Sch80]:

(εp − εh − ω)Xν
ph +

∑
p′h′

(vph,p′h′X
ν
p′h′ + uph,p′h′Y

ν
p′h′) = 0 ;

(εp − εh + ω)Y ν
ph +

∑
p′h′

(v∗ph,p′h′Y
ν
p′h′ + u∗ph,p′h′X

ν
p′h′) = 0 ;

(3.60)

where the eigenvalue ω is the excitation energy, and the interaction
terms are

vph,p′h′ = V̄ph′hp′ = 〈ph′|V |hp′〉 − 〈ph′|V |p′h〉 ;

uph,p′h′ = V̄pp′hh′ = 〈pp′|V |hh′〉 − 〈pp′|V |h′h〉 .
(3.61)

The excited states are orthonormal

〈ν|µ〉 = δνµ ; (3.62)

implying a relation among the Xν
ph and Y

ν
ph coe�cients∑

ph

(Xν
phX

µ
ph − Y

ν
phY

µ
ph) = δνµ . (3.63)

The matrix element of a one-body operator is [Sch80]

〈J |TJ,M |0〉 =
∑
ph

[
XJ,M
ph 〈jp||TJ,M ||jh〉+ (−1)J+jp−jhY J,M

ph 〈jh||TJ,M ||jp〉
]

;

(3.64)
this is expressed in the angular momentum basis as explained in Ap-
pendix B.1.

3.4.1 Continuum RPA results

In this thesis we study axions in a broad range of energies, from a few
MeV to a hundred of MeV. Hence we will use the Continuum RPA
[Appendix B.2] to compute the cross section in Eq. (3.33) that includes
the possibility of nucleon emission. The same cross sections can be
evaluated with di�erent types of nuclear interactions. We used the
D1M, D1MTd and D1S interactions de�ned in [Gor09, Co18, Ber91],
respectively [Appendix B.3]. These interactions have been used to solve
Hartree-Fock equations. Our calculations describe the 16Oground state
and generate the set of single particle states and wave functions.

The binding energy per nucleon predicted by the three interactions are
presented in Tab. (3.1). The calculated energy levels, obtained with
the three forces used in our work, are shown in Tab. (3.2).
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Table 3.1: Binding energy per nucleon of the nucleus 16O . The data are expressed
in MeV.

exp D1M D1Mtd D1S

-7.97620 -7.97507 -8.02556 -8.11250

Table 3.2: Single particle energies obtained in our Hartree-Fock calculations. All
the values are expressed in MeV. The lines divide levels below and
above the Fermi energy.

PROTONS
state exp D1M D1MTd D1S

2s1/2 -0.10 0.85 0.83 1.11
1d5/2 -0.60 -2.33 -2.25 -2.24

1p1/2 -12.11 -11.95 -12.04 -12.52
1p3/2 -18.44 -17.67 -17.74 -18.62
1s1/2 � -32.78 -32.93 -35.41

NEUTRONS
state exp D1M D1MTd D1S

2s1/2 -3.27 -2.21 -2.23 -1.87
1d5/2 -4.14 -5.77 -5.78 -5.61

1p1/2 -15.65 -15.14 -15.25 -15.66
1p3/2 -21.81 -20.95 -21.02 -21.86
1s1/2 � -36.09 -36.19 -38.65

The excitation spectrum of unnatural parity states is shown in Tab. (3.3).
The charge distribution of the 16Oground state is another experimen-
tally observed property of this nucleus. The Hartree-Fock results are
shown in Fig. (3.2).
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Table 3.3: Excitation energies of some unnatural parity states expressed in MeV.

state exp D1M D1Mtd D1S

2- 8.87 9.52 9.36 10.46
0- 10.96 12.89 11.57 13.86
0- 12.80 13.72 12.04 14.78
4- 17.79 15.72 15.46 16.80
4- 18.89 16.80 15.95 18.04

exp

D1S

D1M

D1MTd

0 1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

r (fm)

ϱ
(f
m

-
3
)

Figure 3.2: Charge distribution and experimental data.

3.5 Excitation levels

In our calculations we use a traditional RPA approach where the single
particle con�guration space is generated by de�ning an integration box
where the single particle wave functions are bound. We call Discrete
RPA (DRPA) this type of calculations. On the opposite the Continuum
RPA (CRPA) calculations properly consider the fact that single particle
wavefunctions with positive energy have oscillating behaviour at the
boundaries.
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Figure 3.3: Axion absorption cross sections for di�erent multipolarities and total
cross section with D1M interaction and fa = 106 GeV.

The CRPA approach can be used only for those excitation energies
above the nucleon emission threshold. We combine the results of the
two calculations to have the full spectrum.

We have calculated excited unnatural parity multipoles up to J = 5,
but those Jπ = 0−, 1+, 2− are largely dominant on the other ones. The
results of the CRPA calculations for the �rst six multipolarities of the
cross section with D1M interactions are shown in Fig. (3.3).

In Fig. (3.4)-(3.6) we show the axion cross sections for the �rst three
multipolarities (0−, 1+,2−) evaluated with D1MTd and D1S interac-
tions. The most important features are preserved for all the three
interactions. In the 0− multipole the cross section with the D1MTd
interaction has a pronunced peak near 12 MeV absent in the calcula-
tions with the other interactions. This is because the 0− state is very
sensitive to the presence of a tensor term in the D1MTd interaction
potential. Experimentally, a 0− state in the 16Onucleus has been iden-
ti�ed at about 11 MeV. In general, the D1S interaction shifts the cross
sections to higher energies. A further con�rmation of our results can
be obtained from the comparison of axion and photon cross sections.
A photon cannot excite the 0− multipole, but we can analyze the other
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multipolarities. Fig. (3.7)-(3.8) show the photon cross sections for the
1+ and 2− multipolarities computed with di�erent nuclear interactions.
The energy of the excited levels is very similar for both axions and
photons, as it should be. In fact, even if the incident particles and the
interactions are di�erent, the target nucleus and the available excited
levels are the same.

In Fig. (3.9) we show the results for 0−. The �rst two excitation lev-
els below 15 MeV are slightly di�erent from the CRPA. The peak be-
tween 20 MeV and 25 MeV is a result of the RPA three peaks summed
toghether. The last two RPA points could be an artifact caused by the
discretization of the continuum space, in fact the CRPA has no signs
of these levels. The relevant excited levels for the 0− multipole are:

E = 12.93 MeV σ = 0.5× 10−40 cm2

E = 13.77 MeV σ = 0.575× 10−40 cm2

E = 22.20 MeV σ = 15.87× 10−40 cm2 .

In the case of multipole 1+ in Fig. (3.10), the excited states indicate the
presence of a wide resonance. This is mainly due to the con�gurations
(2p3/2⊗ 1p3/2) for both protons and neutrons. The 2p3/2 single particle
levels are wide resonances in the continuum for this reason we indicate
the peak of the resonance. In conclusion, the relevant level for the 1+

multipole is:

E = 28.00 MeV σ = 3.1× 10−40 cm2 .

The situation for the 2− in Fig. (3.11) is more complicated since discrete
particle states are involved and also in the continuum the single par-
ticle states have relatively narrow widths. The �rst two excites states
are below the nucleon emission threshold and they are taken from the
DRPA results. They are dominated by the (2d5/2 ⊗ 1p1/2) proton and
neutron con�gurations. In our model the neutron and proton 2d5/2

states are bound. The other energies we indicate correspond to the
peaks of the CRPA calculations, also supported by the DRPA.

E = 9.55 MeV σ = 2.52× 10−40 cm2

E = 11.20 MeV σ = 3.47× 10−40 cm2

E = 15.20 MeV σ = 8.47× 10−40 cm2

E = 16.80 MeV σ = 3.02× 10−40 cm2

E = 20.00 MeV σ = 5.07× 10−40 cm2

E = 22.60 MeV σ = 4.85× 10−40 cm2 .
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Since neutrinos and axions cannot be experimentally distinguished, we
calculated the ν and ν-16Oneutral current (NC) cross section for the
excited 16O levels with the DRPA. The NC cross section are almost
�avor-independent, therefore we consider a generic ν and ν̄. The dif-
ference between �avors is in the incident neutrino �ux. In fact the
neutrino-oxygen NC cross section depends from the incident neutrino
energy. Fig. (3.12) shows a comparison between νx and ν̄x cross sections
(convoluted with the νx and ν̄x �uxes).

3.5.1 Excited levels decay

For the calculation of the axion and neutrino induced emission spectra
of 16Oa two-step approach was adopted, similar to the ones chosen
in [Eng90, Lan95]. In a �rst step, the population of excited states in
16Oby axions or neutrinos was calculated in a RPA approach. In the
second step the de-excitation of the excited 16O is treated in a separate
calculation as described below.

Excited states in 16Odecay at least via γ-emission. For states above the
particle separation energies, the decay is dominated by particle emis-
sion. In the calculation, emissions of neutrons, protons, α-particles,
and photons (γ-rays) were considered. This is similar to the approach
used in [Lan95]. The relative transmission into the four channels was
computed using the methods implemented in the SMARAGD Hauser-
Feshbach reaction code [Rau15], with spin/parity-selection rules ap-
plied in the calculation of the energetically allowed transitions. Par-
ticle emission was treated by calculating transmission coe�cients in
an optical model, using the microscopic optical potential shown in
[Jeu77,Lej80] for neutrons and protons, and the global optical poten-
tial used in [Mcf66] for α-particles. The γ-emission from an excited
state was treated as described in [Rau00]. To obtain an appropriate
γ-spectrum, the further de-excitation of populated excited states was
followed additionally by considering a simple γ-cascade, not account-
ing for further particle emission during the cascade. The γ-branching
probability at each excited state reached in the cascade was derived
again from calculated relative γ-transmission coe�cients.

Particle emission from excited states of 16Ocan lead to particle bound
or unbound states in the secondary nuclei 15O, 15N, and 12C, respec-
tively. In order to obtain the full particle and γ spectra, an iterative
approach was adopted, including further particle and γ-emission from
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states in the secondary nuclides populated by the initial decay of states
in 16O . Again, emissions of neutrons, protons, α-particles, and photons
were taken into account and γ-cascades in the secondary nuclides were
followed. With the given initial 16Oexcitation by axions and neutrinos,
tertiary particle emission is negligible and therefore was not included.
Simple γ-emission to the ground state was assumed for the de-excitation
of the �nal, tertiary nuclides.

A main di�erence between axion and neutrino excitation of 16O is that
neutrinos excite isospin T = 1 con�gurations [Lan95] whereas axions
excite states with T = 0 [Eng90]. This results in an isospin suppression
of α-emission from neutrino induced states in 16Oeven when it would be
energetically allowed and favorable. Transmission coe�cients obtained
from an optical model do not consider isospin. Therefore the approach
described in [Lan95] was followed and all γ-transmission coe�cients
were divided by a factor of 100, as suggested in [Kol92]. This leads
to one major di�erence in the spectra induced by neutrinos and by
axions: in the neutrino spectra α-emission from 16Oand thus also the
production and decay of 12C is strongly suppressed.

For the total spectra, all emissions of a particle type or of photons
from all nuclides and all excited states were added. The information of
separate primary and secondary emissions is separately stored in our
output �les and available on request (for example, if a detector would
be able to discriminate between such primary and secondary events).

Using the neutrino and axion �uxes in Chap. 2 and the cross sections
introduced in this Chapter2, we calculated the 16Oemission spectra.
Fig. (3.13)-(3.16) show the photon events in a 374 kton Cherenkov
detector, like Hyper-Kamiokande (see Chap. 4 for details on this cal-
culation), from a galactic SN at distance d = 10 kpc. The ν 16O →
γν 16O and ν̄ 16O → γν̄ 16O processes produce photons in the en-
ergy range [0; 12] MeV as shown in Fig. (3.13)-(3.14). Instead, the
a 16O → γ 16O absorption processes produce photon events in the en-
ergy range [5; 10] MeV [Fig. (3.15)-(3.16)]. Fig. (3.17)-(3.20) show the
number of neutron events. The ν 16O → nν 15O and ν 16O → nν 15O
processes emit neutrons in the energy range [0; 4] MeV [Fig. (3.17)-
(3.18)]. The a 16O→ n 15O absorption processes produce the majority
of neutrons in the energy range [0; 7] MeV [Fig. (3.19)-(3.20)].

2For neutrinos we use a cross section for the ν 16O → ν 16O∗ obtained with a similar

procedure.
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Figure 3.4: Axion cross sections with di�erent interactions for JP = 0− with
fa = 106 GeV .
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Figure 3.5: Axion cross sections with di�erent interactions for JP = 1+ with
fa = 106 GeV .
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Figure 3.6: Axion cross sections with di�erent interactions for JP = 2− with
fa = 106 GeV .
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Figure 3.7: Total photon absorption cross sections with di�erent interactions for
JP = 1+.

D1M

D1MTd

D1S

15 20 25 30

10-7

10-6

10-5

10-4

0.001

0.010

0.100

E (MeV)

σ
2
-
(1
0-
27
cm

2
)

Figure 3.8: Total photon absorption cross sections with di�erent interactions for
JP = 2−.
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Figure 3.9: DRPA vs CRPA: JP = 0− cross section with fa = 106 GeV .
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Figure 3.10: DRPA vs CRPA: JP = 1+ cross section with fa = 106 GeV .
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Figure 3.11: DRPA vs CRPA: JP = 2− cross section with fa = 106 GeV .
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Figure 3.12: DRPA: νx and ν̄x excited levels cross sections convoluted with the
unperturbed (gap = gan = 0) time-integrated neutrino �uxes (inte-
grated over [0.7; 10] s).
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Figure 3.13: Number of photon events produced by νe and νe NC nuclear inter-
actions for a SN at d = 10 kpc and a detector mass M = 374 kton
with gap = gan = 0 and gap = 9× 10−10, gan = 0.

Figure 3.14: Number of photon events produced by νx and νx NC nuclear inter-
actions for a SN at d = 10 kpc and a detector mass M = 374 kton
with gap = gan = 0 and gap = 9× 10−10, gan = 0.
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Figure 3.15: Number of photon events produced by axion nuclear absorption for
a SN at d = 10 kpc and a detector mass M = 374 kton with gap =
9× 10−10, gan = 0.

Figure 3.16: Number of photon events produced by axion nuclear absorption for
a SN at d = 10 kpc and a detector mass M = 374 kton with gap =
gan = 10−6.
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Figure 3.17: Number of neutron events produced by νe and νe NC nuclear inter-
actions for a SN at d = 10 kpc and a detector mass M = 374 kton
with gap = gan = 0 and gap = 9× 10−10, gan = 0.

Figure 3.18: Number of neutron events produced by νx and νx NC nuclear inter-
actions for a SN at d = 10 kpc and a detector mass M = 374 kton
with gap = gan = 0 and gap = 9× 10−10, gan = 0.
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Figure 3.19: Number of neutron events produced by axion nuclear absorption
for a SN at d = 10 kpc and a detector mass M = 374 kton with
gap = 9× 10−10, gan = 0.

Figure 3.20: Number of neutron events produced by axion nuclear absorption
for a SN at d = 10 kpc and a detector mass M = 374 kton with
fa = 106 GeV.
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Chapter 4

Detection of a SN axion signal

In this Chapter we calculate the SN neutrino and axion signal in a
future Mton-scale water Cherenkov detector. In Sec. 4.1 we discuss
some detector properties and the calculation of the detected events.
Sec. 4.2 brie�y summarizes how neutrino �avor conversions would a�ect
the detected neutrino �uxes. In Sec. 4.3 we list the neutrino processes
in a water Cherenkov detector. Sec. 4.4 deals with the free-streaming
axion signal. We discuss how to reduce the neutrino background to
enhance the axion detectability and future perspectives on the detailed
calculation of the axion �ux. In conclusion, in Sec. 4.5 we calculate the
axion signal in the trapping regime.

4.1 Detector features and setup of events

calculation

In this Thesis we will focus on a next-generation Mton-class water
Cherenkov detector to study the sensitivity to the SN axion signal. Wa-
ter Cherenkov detectors employ water as detection material. Optical-
frequency Cherenkov radiation from charged particles moving faster
than light in water is collected by photomultiplier tubes. Among detec-
tors running at the time of this Thesis, Super-Kamiokande will collect
the largest number of individually-reconstructed SN neutrino events.
Super-Kamiokande is a 50-kton water Cherenkov detector in Japan,
located in the Kamioka mine at 1000 meters underground [Ike07]. The
proposed next-generation large water Cherenkov detector is Hyper-
Kamiokande, withM = 374 kton of �ducial mass [Abe11]. We will take
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Figure 4.1: Schematic view of the Hyper-Kamiokande detector. (Figure taken
from [Abe11]).

Hyper-Kamiokande as reference detector for our following discussion.
Fig. (4.1) shows a schematic view of the Hyper-Kamiokande detector.

The detected neutrino (or axion) events in the proposed detector are
calculated as [Fis16]

Nev = F ⊗ σ ⊗R⊗ E ; (4.1)

where F , the neutrino (or axion) �ux, is convoluted with the cross
section σ in the detector, the detector energy resolution R and the
detector e�ciency E . We assume E = 1 above the energy threshold.
Explicitly Eq. (4.1) can be written as [Lun04]

dN

dε
= NT

ˆ +∞

Eth

dε′R(ε, ε′)

ˆ
dE F (E)

dσ

dε′
(ε′, E) ; (4.2)

where ε and ε′ are respectively the observed and true energies of the
detectable particles; NT is the number of targets in the detector; the
detector e�ciency is 1 above the energy threshold Eth = 5 MeV and
the energy resolution, R, is de�ned as [Fog04]

R(ε, ε′) =
1√

2πσ2
ε

e
− (ε−ε′)2

2σ2
ε σε = 0.6

√
ε/MeV ; (4.3)
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as for the Super-Kamiokande detector. The number of targets is cal-
culated as

NT = q
M(kton)× 109

Mmol

×NA ; (4.4)

where M is the detector mass expressed in kton; Mmol is the molar
weight of the target molecule expressed in g /mol; NA = 6.022 × 1023

is the Avogadro's number and q is the number of targets per molecule
e.g. in water, if the target is the oxygen nucleus q = 1, if the targets
are the protons q = 2. The neutrino (or axion) �ux is de�ned as

F (E) =
1

4πd2
N0f(E) ; (4.5)

where N0 is the total number of neutrinos (or axions) emitted from the
SN; d is the distance of the SN and f(E) is the energy distribution of
the emitted neutrinos (or axions) normalized to 1.

4.2 Oscillated neutrino �uxes

The neutrino �uxes emitted from the SN core and discussed in Chap. 2
can be peculiarly modi�cated by �avor oscillations e�ects occurring
in their propagation to the Earth. In the following we assume a stan-
dard three-neutrino framework scenario [Cap18]. The neutrino masses
are indicated as mi i = 1, 2, 3, ordered as m1 < m2 < m3, �normal
hierarchy� (NH); or m3 < m1 < m2, �inverted hierarchy� (IH). The
neutrino mass spectrum is parametrized in terms of two mass squared
di�erences [Cap18]

∆m2
32 = m2

3 −m2
1,2 = 2.45× 10−3 eV2 ;

∆m2
21 = m2

2 −m2
1 = 7.34× 10−5 eV2 .

(4.6)

The sign of ∆m2
32 distinguishes the NH, ∆m2

32 > 0, or the IH, ∆m2
32 <

0. The unitary matrix which transforms the mass eigenstates into �avor
eigenstates, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, is
characterized by three neutrino mixing angles [Cap18]:

sin2 θ12 = 0.304 ;

sin2 θ13 = 0.0214 ;

sin2 θ23 = 0.551 .

(4.7)

In the following we neglect the e�ect of θ23 since we assume that the
νµ and ντ �uxes are equal.
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Assuming that during the cooling phase, neutrino �uxes are processed
by the only Mikheyev-Smirnov-Wolfenstein matter e�ect, the oscillated
neutrino �uxes are given by [Mir16]

Fνe = F 0
νx ;

Fν̄e = cos2 θ12(F 0
ν̄e − F

0
νe) + F 0

νx ;
(4.8)

for NH, and

Fνe = sin2 θ12(F 0
ν̄e − F

0
νx) + F 0

νx ;

Fν̄e = F 0
νx ;

(4.9)

for IH; where F 0
ν and Fν indicate respectively the original neutrino

�uxes and the �uxes that reach our detector. The other �uxes are
calculated using the total �ux conservation [Mir16]:

F 0
νe + 2F 0

νx = Fνe + 2Fνx . (4.10)

Only charged current processes will be a�ected from neutrino oscilla-
tions: the neutral current ones are �avor-blind.

4.3 Neutrino interaction cross sections and

events rate

In a water Cherenkov detector the SN neutrinos reactions are [Raf96]:

� ν̄ep→ ne+: the inverse beta decay (IBD) on free protons;

� νe− → νe−: the elastic scattering (ES) on electrons (ν means
neutrinos and anti-neutrinos of any �avor);

� charged (O-CC) and neutral current (O-NC) interactions on oxy-
gen nuclei.

An approximate form for the IBD cross section is [Str06]

σ(E) = exp(−0.07x+ 0.02x2 − 0.002x4)×(
E

MeV
− 1.293

)2

θ

(
E

MeV
− 1.293

)
× 10−43 cm2 ;

(4.11)

where x = ln(E/MeV).
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Figure 4.2: Neutrino interaction cross sections for processes in a water Cherenkov
detector. The IBD is the dominant reaction.

The neutrino electron ES cross section can be parametrized by [For13]

dσ(Eν,j)

dy
=

2G2
F

π
meEν

[
g2
j + g′j

2(1− y)2 − gjg′j
me

Eν
y

]
j = νe, νe, νx ;

(4.12)
where GF = 1.166× 10−5 GeV−2 is the Fermi constant; me is the elec-
tron mass; gj and g

′
j are the neutrino coupling constants in Tab. (4.1);

sin2 θW = 0.229 is the Weinberg angle [Pat16] and

0 < y = (Ee −me)/Eν < (1 +me/2Eν)
−1 . (4.13)

The O-CC process νe
16O→ e− 16F∗ cross section can be approximated

by [Lah13]

σ(E) = 4.7× 10−40(E0.25 − 150.25)6 θ

(
E

MeV
− 15

)
cm2 . (4.14)

The O-CC νe
16O→ e+ 16N∗ process cross section is approximated by

σ(E) = 4.99× 10−40(E0.23 − 150.23)4.61 θ

(
E

MeV
− 15

)
cm2 . (4.15)

77



Table 4.1: Constants used in the ES scattering cross section [Eq. (4.12)].

Species g g′

νe
1
2

+ sin2 θW sin2 θW
νe sin2 θW

1
2

+ sin2 θW
νx −1

2
+ sin2 θW sin2 θW

νx sin2 θW −1
2

+ sin2 θW

IBD ES O-CC O-NC

1 10 100 1000 104

0.001

0.100

10

1000

105

107

d (kpc)

N
ev

Figure 4.3: Neutrino events for the all detection channels as function of the SN
distance for a water Cherenkov detector of mass M = 374 kton.

The total cross section from O-NC interactions summed over νx and ν̄x
can be approximated by [Bea98]

σ(E) = 0.75

(
E

MeV
− 15

)4

θ

(
E

MeV
− 15

)
× 10−47 cm2 ; (4.16)

even if in the following, for our detailed calculations, we will use RPA
results, in analogy to the axion case. Fig. (4.2) shows the neutrino
cross sections of the di�erent processes described above.
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Table 4.2: Number of neutrino events for a SN at d = 10 kpc and a detector mass
M = 374 kton in the two neutrino mass hierarchies.

Interaction Events NH Events IH

IBD 1.44×104 1.88×104

ES νe 35 35
ES νe 80 80
ES 4νx 759 759
O-CC νe 1.82×103 1.32×103

O-CC νe 793 1.12×103

O-NC νe 2 2
O-NC νe 20 20
O-NC νx 44 44
O-NC νx 52 52

Based on the above cross sections we show the number of events in
function of the distance assuming NH [Fig. (4.3)]. We realize that for
a Mton scale detector the statistics will be excellent for a Galactic
SN [Tab. (4.2)]. The IBD is the greatest source of events and gives
a relevant number of events even at 30 − 40 kpc (∼ 4000 events), the
diameter of our galaxy. Also the ES events are numerous and usually
are used to detect the direction of the source, because the scattered
electron preserves the incident neutrino direction [Raf96,Tom03]. The
photons produced by NC interactions with oxygen fall mostly in the
energy range [5; 10] MeV.

4.4 Axion event rate in the free-streaming

regime

4.4.1 Axion events

In this Section we calculate the number of axion events in the free-
streaming regime (gap = 9 × 10−10 and gan = 0). The axion-oxygen
absorption produce photons in the energy range [5; 10] MeV as shown
in Fig. (4.4), where each discrete energy level has been convoluted with
the energy resolution of the detector [Eq. (4.3)]. Therefore we restrict
our attention to this speci�c window.
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Figure 4.4: Photons produced by axion absorption for a SN at distance d =
1 kpc and for a detector of mass M = 374 kton. The axion coupling
constants are gap = 9× 10−10 and gan = 0.

As we observed in Chap. 2 the neutrino �uxes are modi�ed by free-
streaming axions [Tab. (4.3)]. Fig. (4.5) shows the neutrino and axion
events for NH as function of distance of the SN. The number of axion
and neutrino events in the energy window [5; 10] MeV are tabulated in
Tab. (4.3) for both NH and IH. In order to enhance the SN axion signal
we assumed a close-by SN at d = 1 kpc. We note that the di�erences
between NH and IH are small. Then in the following, for de�nitiveness
we will focus on NH. From Tab. (4.3) we understand that the axion
signal is submerged by the huge neutrino backgrounds even for a nearby
SN (d = 1 kpc). We will now discuss how would be possible to reduce
the neutrino background.
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Table 4.3: Number of neutrino events in the range [5; 10] MeV for a SN at d =
1 kpc and a detector mass M = 374 kton in the two neutrino mass
hierarchies.

gap = 9× 10−10, gan = 0

Interaction Events NH Events IH

a-O 270 270
IBD 1.99×105 2.39×105

ES νe 1.99×103 1.99×103

ES νe 3.58×103 3.58×103

ES 4νx 2.97×104 2.97×104

O-CC νe 1.39×103 1.39×103

O-CC νe 374 447
O-NC νe 99 99
O-NC νe 856 856
O-NC νx 2.34×103 2.34×103

O-NC νx 1.79×103 1.79×103

4.4.2 Background reduction

Inverse beta decay

The IBD is the most important neutrino background source for the
axion signal. This process is sensitive to the νe component of the �ux
and has an energy threshold of 1.293 MeV, the neutron-proton mass
di�erence. The observable signal is given by the Cherenkov radiation
of the produced positron.

A possible enhancement in identifying IBD events would be achieved
if one can tag the neutron associated with the reaction in coincidence
with the positron [Bea03,Lah13,Sch11]. In fact, a neutron needs about
200µs to thermalize and to be captured by a free proton. Moreover,
this neutron capture releases a 2.2 MeV photon. Unfortunately, this low
energy photons cannot be detected because they are below the detector
threshold. In order to improve the detectability of neutron captures, a
Cherenkov detector can be doped with gadolinium (Gd). This element
has a large neutron capture cross section and, after a neutron capture,
emits a cascade of photons with a total energy of 8 MeV.
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Figure 4.5: Neutrino and axion events for the all detection channels as function
of the SN distance in the range [5; 10] MeV for a detector of mass
M = 374 kton.

This possibility will be soon realized in Super-Kamiokande doping the
detector with Gd to improve the neutron capture cross section for better
tagging of ν̄e [Bea03]. This upgrade has been proposed to strongly en-
hance the detectability of the feeble signal associated with di�use SN
neutrino background (DSNB) coming from all the past core-collapse
SNe in the Universe [Lah13]. The tagging e�ciency for electrons via
neutron capture on free protons is about 18%. A Gd tagging e�ciency
of at least 67% has been demonstrated [Wat08], but it can likely be
improved beyond that. In this sense we will assume 90% tagging e�-
ciency as quoted in [Lah13]. Then, the remaing 10% of the IBD signal
can be statistically subtracted. In conclusion, the IBD is the most im-
portant contribution to the background, but it can be reduced up to
90% in Gd-doped detectors as shown in Tab. (4.4).
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Figure 4.6: Angular distribution of IBD events (green) and ES (blue) from a
simulated SN. (Figure taken from [Tom03]).

Elastic scattering

The ES involves the all �avors and produce an unbound electron, and
then Cherenkov radiation. The scattered electron preserves the incident
neutrino direction and indeed can be used to point the SN as shown
in Fig. (4.6) [Raf96]. Then the majority of ES events (about 95%) is
contained in a 40

◦
cone, making possible a reduction of this background

by means of a directional cut. This directional cut eliminates also the
12% of the events in the other channels [Lah13,Tom03].

NC and CC nuclear interactions

Concering neutrino O-NC and O-CC interactions, we assume that can
be statistically subtracted, measuring the input neutrino �uxes in com-
bination with other experiments (e.g. DUNE and JUNO).

The resultant events are shown in Tab. (4.4).

After all the background reduction, one realizes the axion signal would
appear at less than 2σ for a nearby SN at d = 1 kpc.
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Table 4.4: Total number of events with and without neutrino background reduc-
tion in the range [5; 10] MeV for a SN at d = 1 kpc and detector mass
M = 374 kton. We assume neutrino normal mass hierarchy.

Background reduction
gap = 9× 10−10, gan = 0

Interaction Events Gd doping Directional cut

a-O 270 270 238
IBD 1.99×105 1.99×104 1.75×104

ES 3.53×104 3.53×104 1.77×103

O-CC 1.76×103 1.76×103 1.55×103

O-NC 9.21×103 9.21×103 8.10×103

4.4.3 New calculation of axion emissivity

Taking into account the corrections in Appendix A.4, that extends
the nucleon axion-bremsstrahlung beyond the OPE approximation, the
new axion �ux F ′ would be roughly reduced by a factor ∼ 20 with
respect to the one we have used until now (F ):

F ′ ∼ F

20
. (4.17)

Since the �ux in the free-streaming regime is proportional to [Eq. (2.15)]
F ∼ g2

ap, to obtain the same luminosity of F , the new coupling constant
g′p should obey to

F ′(g′ap) = F (gap) →
F (g′ap)

20
= F (gap) → g′ap

2 = 20g2
ap . (4.18)

Therefore in this case, with the same �ux, the cross section is enhanced
by a factor 20 (g′ap = 4 × 10−9) [Eq. (3.33)]. Then the detected axion
events would be 20 times larger than the ones calculated until now.
These rough estimates are summarized in Tab. (4.5). With this en-
hanced coupling, the free-streaming axions are clearly observable for a
SN at d = 1 kpc, at ∼ 28σ, and they have a signi�cance of ∼ 3σ for
a SN at d = 10 kpc. Therefore, this estimate would really open the
possibility to detect free-streaming axions and it deserves a dedicated
investigation to con�rm it, with new simulations of axion emissivity.
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Table 4.5: Total number of events, with background reduction (gap = 4 × 10−9

and gan = 0) in the range [5; 10] MeV for a SN at d = 1 kpc and
a detector mass M = 374 kton. We assume neutrino normal mass
hierarchy.

gap = 4× 10−9, gan = 0

Interaction Events

a-O 4.76×103

IBD 1.75×104

ES 1.77×103

O-CC 1.55×103

O-NC 8.10×103
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4.5 Axion event rate in the trapping regime

In the trapping regime (gap = gan = 10−6) the neutrino �uxes are
unperturbed as explainded in Chap. 2. The neutrino and axion number
of events are shown in Tab. (4.6). The axion signal is very clear also
from a SN at 10 kpc without any background reduction.

Table 4.6: Number of events in the range [5; 10] MeV for a SN at d = 10 kpc
and a detector mass M = 374 kton. We assume neutrino normal mass
hierarchy in the �rst column and inverted mass hierarchy in the second.

gap = gan = 10−6

Interaction Events NH Events IH

a-O 2.73×105 2.73×105

IBD 2.85×103 3.31×103

ES νe 27 27
ES νe 55 55
ES 4νx 440 440
O-CC νe 19 19
O-CC νe 5 6
O-NC νe 2 2
O-NC νe 20 20
O-NC νx 43 43
O-NC νx 51 51
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Chapter 5

Conclusions

In this Thesis we revised and updated the mechanism of axion emission
from core-collapse SNe and characterized the perspectives for their de-
tection in a large Mton-class water Cherenkov detector. At �rst, using
the state-of-the-art SN simulations, we characterized the expected ax-
ion spectrum in both free-streaming and trapping regime. Then, our
main goal was to investigate if this axion �ux, that can be comparable
or larger than the neutrino one, has chances of being detected in the
case of a Galactic SN explosion. In this regard, as realized in a seminal
paper by Engel et al. [Eng90], the main detection channel for axions in
a water Cherenkov detector would be the axion absorption on oxygen
nuclei, whose de-excitation would lead to a photon signal. In order
to have a reliable characterization of this signal we performed an up-
dated calculation of the axion-oxygen cross section, based on avanced
techniques used in nuclear physics (Random Phase Approximation).
With this result, the next step has been to calculate the branching ra-
tio for oxygen de-excitation in photons. For this purpose, we used a
code (SMARAGD Hauser-Feshbach reaction code) that computed the
decay branching ratio in the all possible channels for oxygen excited
by axion absorption. With a complete characterization of the cross
section, we �nally computed the gamma-ray signal associated with the
axion-oxygen process in a Mton-scale water Cherenkov detector, such
as Hyper-Kamiokande. We realized that in the trapping regime the
axion signal would be clearly detectable, but in the free-streaming case
it would be submerged by a huge neutrino background. However, if the
Hyper-Kamiokande detector would be doped with Gd, this would allow
one to reduce the huge background from inverse beta decay. Then, in
principle the axion signal seems to be detectable expecially if one in-
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cludes the recently-discussed modi�cations [Cha18] in the calculation
of axion emissivity from a SN. Our work motivates further studies to
improve the characterization of the axion emission process and of the
signal detectability. In this context, our main result, i.e. the accurate
characterization of the axion detection cross section, would remain ex-
tremely useful to perform further and more accurate estimates. In con-
clusion, the next Galactic SN explosion together with the unprecedent
sensitivity of next-generation neutrino detectors would be a lifetime
opportunity for axions.
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Appendix A

Axion processes in a nuclear

medium

A.1 The energy-loss rate

Axions are produced in a SN enviroment mostly by nucleon bremsstrahlung.

N1

N2

N3

N4

a

π

The matrix element of this process, for a single species of nucleons,
is [Raf96]

∑
spin

|M|2 =
16(4π)3α2

παa
3m2

N

[(
k2

k2 +m2
π

)2

+

(
l2

l2 +m2
π

)2

+

+
k2l2 − 3(k · l)2

(k2 +m2
π)(l2 +m2

π)

]
;

(A.1)

where αa = (CNmN/fa)
21/4π, k = p2 − p4 and l = p2 − p3. The �rst

term is the result from direct diagrams, the second from the exchange
diagrams and the third term results from the interference. From the
equipartition principle k2 ≈ 3mNT and then k2 � m2

π for a typical SN
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temperature. Therefore Eq. (A.1) becomes∑
spin

|M|2 =
16(4π)3α2

παa
m2
N

[
1− (k̂ · l̂)2

]
; (A.2)

and the term (k̂·̂l)2 could be important in a non-degenerate enviroment.
However, in a �rst approximation the matrix element can be written
as [Raf96] ∑

spin

|M|2 =
16(4π)3α2

παa
m2
N

. (A.3)

The energy-loss rate is de�ned as [Raf96]

Qa =

ˆ
d3ka

2ωa(2π)3
ωa

ˆ 4∏
i=1

d3pi
2Ei(2π)3

f1f2(1− f3)(1− f4)×

(2π)4δ4(P1 + P2 − P3 − P4 −Ka)
1

4

∑
spins

|M|2 ;

(A.4)

where the factor 4 eliminates the double counting of identical fermions.
In a non-degenerate enviroment we consider (in the non-relativistic ap-
proximation) Maxwell-Boltzmann energy distributions, neglecting the
Pauli blocking factors 1− f3,4

fp =
nB
2

(
2π

mNT

)3/2

e−p
2/2mNT ;

2

ˆ
d3p

(2π)3
fp = nB .

(A.5)

In the bremsstrahlung process the typical axion energy will be ωa =
p2/2mN � |p|, then the Dirac delta can be approximated as

δ4(P1+P2−P3−P4−Ka) ≈ δ(E1+E2−E3−E4−ωa)δ3(p1+p2−p3−p4) .
(A.6)

With these approximations Eq. (A.4) becomes

Qa =

ˆ
dωa

(2π)2
ω2
a

ˆ 4∏
i=1

d3pi
2mN(2π)3

f1f2(2π)4δ(E1 + E2 − E3 − E4 − ωa)×

δ3(p1 + p2 − p3 − p4)
1

4

∑
spins

|M|2 .

(A.7)

90



Integrating over one of the pi we can remove the delta over the momenta

Qa =
1

16m4
N(2π)10

ˆ
dωaω

2
a

ˆ 3∏
i=1

d3pi

(
nB
2

(
2π

mNT

)3/2
)2

×

e−p
2
1/2mNT e−p

2
2/2mNT δ(E1 + E2 − E3 − E4 − ωa)

∑
spins

|M|2 .

(A.8)

In the center of mass reference frame we can write

p1/2 = p0 ± p p3/4 = p0 ± q (A.9)

and then

Qa =
1

8m4
N(2π)10

ˆ
dωaω

2
a

ˆ
d3p0d

3pd3q

(
nB
2

(
2π

mNT

)3/2
)2

×

e−p
2
0/mNT e−p

2/mNT δ

(
p2

mN

− q2

mN

− ωa
)∑

spins

|M|2 ;

(A.10)

where we inserted a factor 2 from the Jacobian. Integrating over p0

using Eq. (A.5) we obtain

ˆ
d3p0 e

−p2
0/mNT = (2π)3

(
mNT

4π

)3/2

;

Qa =
n2
B

32m4
N(2π)4

ˆ
dωaω

2
a

ˆ
d3pd3q

(
1

4πmNT

)3/2

e−p
2/mNT δ

(
p2

mN

− q2

mN

− ωa
)∑

spins

|M|2 .

(A.11)

Introducing the new variables

u2 =
p2

mNT
d|p| =

√
mNTdu ;

v2 =
q2

mNT
d|q| =

√
mNTdv ;

x =
ωa
T

dωa = T dx .

(A.12)

The delta becomes

δ

(
p2

mN

− q2

mN

− ωa
)

= δ(u2 − v2 − |x|) 1

T
; (A.13)
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and the energy-loss rate

Qa =
n2
BT

3
√
T
√
π

32× 8m
5/2
N π4

ˆ +∞

0

dx x2

ˆ
du dv u2v2e−u

2

δ(u2−v2−|x|)
∑
spins

|M|2 .

(A.14)
Introducing the functions

Γσ = 4
√
πα2

πnB
√
Tm

−5/2
N ;

s(x) = 4

ˆ
du dv u2v2e|x|−u

2

δ(u2 − v2 − |x|) =

= 2

ˆ
du dv uv2e|x|−u

2

δ(u−
√
v2 + |x|) =

= 2

ˆ
dv
√
v2 + |x|v2e−v

2

=

ˆ
dy
√
y2 + y|x|e−y ≈

√
1 +
|x|π

4
;

(A.15)

where y = v2, we obtain

Qa =
nBT

3

32× 8π4

Γσ
16α2

π

ˆ +∞

0

dx x2s(x)e−x
∑
spins

|M|2 . (A.16)

In the case of axion bremsstrahlung this equation becomes

Qa =
αanBΓσT

3

4πm2
N

ˆ +∞

0

dx x2s(x)e−x . (A.17)

A.2 Mixture of protons and neutrons

Eq. (A.1) can be generalized to axions that couple to both protons and
neutrons as follows [Raf95]. The direct terms are∑

spin

|M|2 =
16(4π)3α2

παa
3m2

N

C2
p,n[(

k2

k2 +m2
π

)2

+

(
l2

l2 +m2
π

)2

+
k2l2 − 3(k · l)2

(k2 +m2
π)(l2 +m2

π)

]
;

(A.18)
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and the exchange term is

∑
spin

|M|2 =
16(4π)3α2

παa
3m2

N

[
(C2

0 + C2
1)

(
k2

k2 +m2
π

)2

+

+ (4C2
0 + 2C2

1)

(
l2

l2 +m2
π

)2

+ 2
(C2

0 + C2
1)k2l2 − (3C2

0 + C2
1)(k · l)2

(k2 +m2
π)(l2 +m2

π)

]
;

(A.19)

where C0 = (Cp + Cn)/2 and C1 = (Cp − Cn)/2. Now we will discuss
only the exchange term. Introducing the new variables

u =
p2

mNT
d|p| =

√
mNT

u

du

2
;

v =
q2

mNT
d|q| =

√
mNT

v

dv

2
;

x =
ωa
T

dωa = T dx ;

y =
m2
π

mNT
z =

p · q
|p||q|

;

(A.20)

and

k2

mNT
= u+ v − 2z

√
uv ;

l2

mNT
= u+ v + 2z

√
uv ;

k · l
mNT

= u− v .

(A.21)

The matrix element in Eq. (A.19) can be written as

∑
spin

|M|2 =
16(4π)3α2

παa
3m2

N

[
(C2

0 + C2
1)

(
u+ v − 2z

√
uv

u+ v − 2z
√
uv + y

)2

+

+ (4C2
0 + 2C2

1)

(
u+ v + 2z

√
uv

u+ v + 2z
√
uv + y

)2

+

+ 2
(C2

0 + C2
1)[(u+ v)2 − 4z2uv]− (3C2

0 + C2
1)(u− v)2

[(u+ v + y)2 − 4z2uv]

]
.

(A.22)
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From Eq. (A.11)

Qa =
n2
BT

5

64mN(2π)2

ˆ
dx x2

ˆ
du dv dz

√
uv

(
1

4πmNT

)3/2

e−uδ (u− v − |x|)
∑
spins

|M|2 =

=
n2
BT

7/2

64× 32m
5/2
N π3

√
π

ˆ
dx x2

ˆ
du dv dz

√
uve−u

δ (u− v − |x|)
∑
spins

|M|2 .

(A.23)

Inserting Eq. (A.22) in Eq. (A.23) we obtain

Qa =
α2
παan

2
BT

7/2

6m
9/2
N

√
π

ˆ
dx x2

ˆ
du dv dz

√
uve−uδ (u− v − |x|) f(u, v, z) .

(A.24)
where f(u, v, z) is the momentum dependent part in Eq. (A.22). Ne-
glecting the pion mass, y = 0, Eq. (A.24) can be written as

Qa =
αaα

2
π√
π

n2
BT

7/2

m
9/2
N

128

105
[3(C2

0 +C2
1)I0+(4C2

0 +2C2
1)I0−(6C2

0 +2C2
1)Ik·l] ;

(A.25)
where

I0 =
35

128

ˆ
du dv dx x2

√
uve−uδ(u− v − x) =

35

128

ˆ
dx x2e−xs0(x) ;

Ik·l =
35

128

ˆ
du dv dx x2

√
uve−uδ(u− v − x)

1

2

ˆ 1

−1

dz
(u− v)2

(u+ v)2 − 4z2uv
=

=
35

128

ˆ
dv dx x4

√
(v + x)ve−xe−v

1

2

ˆ 1

−1

dz
1

(2v + x)2 − 4z2(v + x)v
=

=
35

128

ˆ
dv dx x4

√
(v + x)v

2v + x
e−xe−v

ˆ 1

−1

dz

(
1

(2v + x)− 2z
√
v(v + x)

+
1

(2v + x) + 2z
√
v(v + x)

)
=

=
35

128

ˆ
dv dx

x4

4(2v + x)
e−xe−v log

(
2v + x+ 2

√
v(v + x)

2v + x− 2
√
v(v + x)

)
=

=
35

128

ˆ
dx x2e−xsk·l(x) ;

(A.26)
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and

s0(x) =

ˆ
dv
√

(v + x)ve−v ;

sk·l(x) =

ˆ
dv

x2

4(2v + x)
e−v log

(
2v + x+ 2

√
v(v + x)

2v + x− 2
√
v(v + x)

)
.

(A.27)

The energy-loss with direct and exchange terms can be written as

Qa =
αaα

2
π√
π

n2
BT

7/2

m
9/2
N

ˆ
dx x2e−xs(x) ; (A.28)

where

s(x) =
4

3
YpYn

[
(7C2

0 + 5C2
1)s0(x)− (6C2

0 + 2C2
1)sk·l(x)

]
+

+ (Y 2
p C

2
p + Y 2

nC
2
n)(s0(x)− sk·l(x)) .

(A.29)

A.3 Axion opacity

The axion velocity is [Raf96]

βω = v =
p

ω
=

√
ω2 −m2

ω
=

√
1− m2

ω2
. (A.30)

The mean free path for a given energy ω is lω and the energy distribu-
tion is

Bω(T ) dω =
ω

eω/T − 1

d3k

(2π)3
=

1

2π2

ω3

eω/T − 1
dω . (A.31)

The energy �ux is related to the energy gradient [Raf96]:

Fω = −1

3
βωlω∇Bω . (A.32)

The integrated �ux is

F = −1

3

ˆ ∞
0

dω βωlω∂TBω∇T ; (A.33)

where ∂T = ∂/∂T . For photons one de�nes the Rosseland mean opacity
as [Raf96]

1

kγρ
= − 3F

∇(aT 4)
; (A.34)
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where the photon energy density is aT 4 and a = π2/15. Similarly we
de�ne the axion mean opacity

1

kxρ
=

15

4π2T 3

ˆ ∞
0

dω lω(1− e−ω/T )−1∂TBω ; (A.35)

and the enhancement factor stimulates the production of low-energy
bosons. Introducing the variable x = ω/T and neglecting the term of
lower order than x4e2x, Eq. (A.35) becomes [Raf96]

1

kxρ
= − 15

8π4

ˆ ∞
0

dx lx
xex

(ex − 1)
∂x

x3

ex − 1
=

= − 15

8π4

ˆ ∞
0

dx lx
xex

(ex − 1)

3x2(ex − 1)− x3ex

(ex − 1)2
≈

≈ 15

8π4

ˆ ∞
0

dx lx
x4e2x

(ex − 1)3
.

(A.36)

The energy-loss rate is obtained mediating the term ω/∆t where ∆t is
a typical axion emission time. Axions escape in a characteristic time
∆t ∼ lω/βω and then

Qa ∼
ˆ
dω ω2e−ω/T

ω

lω/βω
; (A.37)

where βω = 1 for axions. From Eq. (A.35), since αa = (CNmN/fa)
2/4π

Qa =

(
CNmN

fa

)2
nBΓσT

3

8π2m2
N

ˆ +∞

0

dx x2s(x)e−x =

=
T 4

π2

ˆ +∞

0

dx x2e−xxl−1
x ;

(A.38)

we identify the mean free path as

l−1
x =

(
CN
2fa

)2
nBΓσ
T

s(x)

2x
. (A.39)

The Rosseland mean opacity is [Raf96]

ka =

(
CN
2fa

)2
Γσ
TmN

k̂ ;

k̂−1 =
15

8π4

ˆ ∞
0

dx
x4e2x

(ex − 1)3

2x

s(x)
.

(A.40)
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A.4 Corrections to the axion energy-loss rate

In a recent paper [Cha18] the axion absorption rate is calculated taking
into account various corrections. The axion absorption rate would be

Γa = Γnna + Γpna + Γnpa + Γppa ; Γija =
C2
i YiYj
4f 2

a

ω

2

n2
Bσnpπ
ω2

γfγpγh ; (A.41)

where Ci for i = n, p are the axion-nucleon coupling constants; Yi
for i = n, p are the nucleon number per baryon; σnpπ is the nucleon-
nucleon cross section in the OPE approximation with vanishing pion
mass, de�ned as

σnpπ = 4α2
π

√
πT

m5
N

. (A.42)

The three corrections are:

γf =
1

1 + (nBσnpπ/2ω)2
; (A.43)

to cut-o� the infrared divergence in Eq. (A.41); γp to account for the
pion �nite mass and γh is the ratio between the structure function in the
chiral perturbation theory and the one calculated in the OPE. These
factors suppress the emission rate by a factor between 5 and 100 as
shown in Fig. (A.1).
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Figure A.1: (Left panel) The correction factors discussed in the text. Near the
core the suppression is about two orders of magnitude. (Right
panel) Product of the corrections near the core. (Figure taken
from [Cha18]).
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Appendix B

More on RPA

B.1 RPA equations in angular momentum

coupling

We consider two reference systems rotated by the Euler angles α, β, γ.
The rotation matrix D(α, β, γ) is an operator de�ned by the operation

r′ = D(α, β, γ)r = eiγJzeiβJyeiαJxr . (B.1)

Two rotated eigenstates of J2 and Jz are |jm〉 and |jm′〉, which di�er
only for the Jz eigenvalues. The matrix element of the rotation matrix
between these states is

〈jm′|D(α, β, γ)|jm〉 = Dj
m′m(α, β, γ) . (B.2)

An irreducible spherical operator of rank k is a set of 2k + 1 operators
transforming under a rotation as [Sch80]

D(α, β, γ)T kq D
†(α, β, γ) =

k∑
q′=−k

T kq′D
k
q′q(α, β, γ) . (B.3)

Eq. (3.60) can be explicitly written in the angular momentum basis
because the nuclear states are eigenstates of J2 and Jz operators. In
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this basis, Eq. (3.56) becomes [Sch80]

Q†J,M(jp, jh) =
∑
ph

[
XJ,M
ph a†jpmp(−1)jh+mhajh−mh − Y

J,M
ph a†jhmh(−1)jp+mpajp−mp

]
;

XJ,M
ph =

∑
mpmh

〈jpmpjhmh|JM〉Xph ;

Y J,M
ph =

∑
mpmh

〈jpmpjhmh|J −M〉(−1)J−MYph .

(B.4)

This operator is a spherical tensor of rank J and 2J + 1 components
indicated by M . Eq. (3.60) becomes [Sch80]

(εp − εh − ω)XJ,M
ph +

∑
p′h′

(vJph,p′h′X
J,M
p′h′ + uJph,p′h′Y

J,M
p′h′ ) = 0 ;

(εp − εh + ω)Y J,M
ph +

∑
p′h′

(v∗Jph,p′h′Y
J,M
p′h′ + u∗Jph,p′h′X

J,M
p′h′ ) = 0 ;

(B.5)

where

vJph,p′h′ =
∑
K

(−1)jh+jp′+K
√

2K + 1

{
jp jh J
jp′ jh′ K

}
[
〈jpjh′K||V ||jhjp′K〉 − (−1)jh+jp′−K〈jpjh′K||V ||jp′jhK〉

]
;

uJph,p′h′ = (−1)jh′−jp′−JvJph,h′p′ ;

(B.6)

introducing the 6-j Wigner symbol.

B.2 Continuum RPA

The RPA can be further extended including excitations to the contin-
uum. We call Continuum RPA (CRPA) this formulation of the RPA.
The creation operator in Eq. (3.56) can be generalized as

Q†ν =
∑
ph

 0∑
εp>εF

(
Xν
ph(εp)a

†
pah − Y ν

ph(εp)a
†
hap

)
+

+

ˆ ∞
0

dεp

(
Xν
ph(εp)a

†
pah − Y ν

ph(εp)a
†
hap

)]
;

(B.7)
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where the energy εp is a continuous variable. In this case we rewrite
Eq. (3.60) considering also continuum transitions. Eq. (3.60) is replaced
by an integral system of equations [Sch80]:

(εp − εh − ω)Xν
ph(εp) +

∑
p′h′

(vph,p′h′X
ν
p′h′ + uph,p′h′Y

ν
p′h′)+

+
∑
p′h′

ˆ
dεp′

(
vph,p′h′X

ν
p′h′(εp′) + uph,p′h′Y

ν
p′h′(εp′)

)
= 0 ;

(εp − εh + ω)Y ν
ph(εp) +

∑
p′h′

(v∗ph,p′h′Y
ν
p′h′ + u∗ph,p′h′X

ν
p′h′)+

+
∑
p′h′

ˆ
dεp′

(
v∗ph,p′h′Y

ν
p′h′(εp′) + u∗ph,p′h′X

ν
p′h′(εp′)

)
= 0 .

(B.8)

The integration on εp′ is extended to in�nity. We introduce the new
variables f[p]h(r) and g[p]h(r), called �channel functions�

f[p]h(r) =
0∑

εp>εF

Xph(εp)Rp(r, εp) +

ˆ ∞
0

dεp′Xph(εp′)Rp(r, εp′) ;

g[p]h(r) =
0∑

εp>εF

Yph(εp)Rp(r, εp) +

ˆ ∞
0

dεp′Yph(εp′)Rp(r, εp′) .

(B.9)

The radial wavefunctions Rp(r, εp) are determined by solving the one-
body Schrödinger equation

hpRp(r, εp) = εpRp(r, εp) ; (B.10)

and they are normalized as∑
εα

R∗α(r, εα)Rα(r′, εα) +

ˆ
dεαR

∗
α(r, εα)Rα(r′, εα) = δ(r− r′) . (B.11)
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Multiplying Eq. (B.8) by Rα(r, εα), integrating, summing and using
Eq. (B.11) we obtain

(h0 − εh − ω)fJω[p]h(r) = −
∑
[p′]h′

ˆ
dr′r′2

[
R∗h′(r

′)Rh(r)f
Jω
[p′]h′(r

′)〈ph|V |p′h′〉+

−R∗h′(r′)Rh(r
′)fJω[p′]h′(r)〈ph|V |h′p′〉+Rh(r)Rh′(r

′)g∗[p′]h′
Jω(r′)〈pp′|V |hh′〉+

−Rh(r
′)Rh′(r)g

∗
[p′]h′

JE(r′)〈pp′|V |h′h〉
]

+BST ;

(h0 − εh + ω)gJω[p]h(r) = −
∑
[p′]h′

ˆ
dr′r′2

[
R∗h′(r

′)Rh(r)g
Jω
[p′]h′(r

′)〈ph|V |p′h′〉+

−R∗h′(r′)Rh(r
′)gJω[p′]h′(r)〈ph|V |h′p′〉+Rh(r)Rh′(r

′)f ∗[p′]h′
Jω(r′)〈pp′|V |hh′〉+

−Rh(r
′)Rh′(r)f

∗
[p′]h′

JE(r′)〈pp′|V |h′h〉
]

+BST ;

BST =
∑
[p′]h′

∑
εp<εF

ˆ
dr1r

2
1

ˆ
dr2r

2
2Rp(r)Rp(r1)∗{

R∗h′(r2)
[
Rh(r1)f[p′]h′(r2)〈ph|V |p′h′〉+

−Rh(r2)f[p′]h′(r1)〈ph|V |h′p′〉
]

+ g∗[p′]h′(r2) [Rh(r1)Rh′(r2)〈pp′|V |hh′〉+
−Rh′(r1)Rh(r2)〈pp′|V |h′h〉]} .

(B.12)

We solve Eq. (B.12) each time imposing that a particle is emitted in
a channel de�ned by the quantum numbers p0, h0. The asymptotic
behaviour of the solutions must be the same of the free scattering. The
numerical techniques used to solve these equations are described in
detail in [Co11].
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B.3 Interaction potential

A very general expression of the interaction potential depends from
spin σ and isospin τ operators [Sch80]

V (r12) = v1(r12) + v2(r12)τ 1 · τ 2 + v3(r12)σ1 · σ2+

+ v4(r12)(τ 1 · τ 2)(σ1 · σ2) + v5(r12)S12(r̂12) + v6(r12)S12(r̂12)τ 1 · τ 2+

+ [vρ(r12) + vρ,τ (r12)(τ 1 · τ 2)][ρ(r1)ρ(r2)]α/2 ;

(B.13)

where
S12(r̂) = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 . (B.14)
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