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Abstract
We show that given any ordinary differential equation of even order n, it is always

possible to determine at least one bona-fide Lagrangian if the n− 1 derivative is absent (or
eliminated) from the equation. The key is the Jacobi last multiplier as in the well-known
case of a second-order equation. The known link between Jacobi last multiplier and Lie
symmetries is exploited. Two equations from a Number Theory paper by Hall, one of
second and one of fourth order, will be used to exemplify the method.

1 Introduction

DRAFT
It is well-known that a Lagrangian always exists for any second-order ordinary differential
equation [11]. The key is the Jacobi last multiplier [3], [4], [5], [11], which has many interesting
properties, a list of which can be found in [9]. Here we use the Jacobi last multiplier in order
to find Lagrangians for ordinary differential equations of even order n > 2. The known link
between Jacobi last multiplier and Lie symmetries [6], [7] is exploited.
The paper is organized in the following way. In the next section we will present our method.
In section 3 two equations from a Number Theory paper by Hall [2], one of second and one of
fourth order, will be used to exemplify the method itself. The last section contains some final
remarks.

2 The method

The well-known relationship between the Jacobi Last Multiplier, M, and the Lagrangian, L =
L(t, u, u′), for any second-order equation

u′′ = F (t, u, u′) (1)
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is [11]

M =
∂2L

∂u′2
(2)

where M = M(t, u, u′) satisfies the following equation

dM

dt
+ M

∂F

∂u′
= 0. (3)

Then equation (1) becomes the Euler-Lagrange equation:

− d
dt

(
∂L

∂u′

)
+

∂L

∂u
= 0. (4)

The proof is given by taking the derivative of (4) by u′ and showing that this yields (3). If one
knows a Jacobi last multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M du′
)

du′ + f1(t, u)u′ + f2(t, u), (5)

where f1 and f2 are functions of t and u which have to satisfy a single partial differential
equation related to (1) [10]. As it was shown in [10], f1, f2 are related to the gauge function
g = g(t, u, u′). In fact, we may assume

f1 =
∂g

∂u

f2 =
∂g

∂t
+ f3(t, u) (6)

where f3 has to satisfy the mentioned partial differential equation and g is obviously arbitrary.
The importance of the gauge function should be stressed. In order to apply Noether’s theorem
correctly, one should not assume g ≡ const, otherwise some first integrals may not be found
(see [10] and the second-order equation in the next section).

We now consider a fourth-order equation, i.e.

u(iv) = F (t, u, u′, u′′, u′′′). (7)

In this case the Jacobi last multiplier satisfies the following equation

dM

dt
+ M

∂F

∂u′′′
= 0. (8)

It is easy to show that if a Lagrangian L = L(t, u, u′, u′′) is taken such that

M =
∂2L

∂u′′2
(9)

2



along with the constraint
∂F

∂u′′′
= 0, (10)

then equation (7) becomes the Euler-Lagrange equation:

+
d2

dt2

(
∂L

∂u′′

)
− d

dt

(
∂L

∂u′

)
+

∂L

∂u
= 0. (11)

The proof consists into taking the partial derivative of (11) by u′′′ and showing that this yields
(8).

We underline that because of the assumption (10), then a Jacobi last multiplier M is easy
to find from equation (8), namely

M = const. (12)

If one knows a Jacobi last multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M du′′
)

du′′ + f1(t, u, u′)u′′ + f2(t, u, u′), (13)

where f1 and f2 are functions of t, u, u′ which have to satisfy some partial differential equations
related to (7). We can relate f1, f2 to the gauge function g = g(t, u, u′, u′′). In fact, we may
assume

f1 =
∂g

∂u′

f2 =
∂g

∂u
u′ +

∂g

∂t
+ f3(t, u, u′) (14)

where f3 has to satisfy the mentioned partial differential equations and g is obviously arbitrary.
Again we stress the importance of the gauge function. In order to apply Noether’s theorem
correctly, one should not assume g ≡ const, otherwise some first integrals may not be found
(see the fourth-order equation in the next section).

We now consider a sixth-order equation, i.e.

uvi = F (t, u, u′, u′′, u′′′, uiv, uv). (15)

In this case the Jacobi last multiplier satisfies the following equation

dM

dt
+ M

∂F

∂uv
= 0. (16)

It is easy to show that if a Lagrangian L = L(t, u, u′, u′′, u′′′) is taken such that

M =
∂2L

∂u′′′2
(17)
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along with the constraint
∂F

∂uv
= 0, (18)

then equation (15) becomes the Euler-Lagrange equation:

− d3

dt3

(
∂L

∂u′′′

)
+

d2

dt2

(
∂L

∂u′′

)
− d

dt

(
∂L

∂u′

)
+

∂L

∂u
= 0. (19)

The proof consists into taking the partial derivative of (19) by uv and showing that this yields
(16).

We underline that because of the assumption (18), then a Jacobi last multiplier M is easy
to find from equation (16), namely

M = const. (20)

If one knows a Jacobi last multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M du′′′
)

du′′′ + f1(t, u, u′, u′′)u′′′ + f2(t, u, u′, u′′), (21)

where f1 and f2 are functions of t, u, u′, u′′ which have to satisfy some partial differential
equations related to (15). We can relate f1, f2 to the gauge function g = g(t, u, u′, u′′, u′′′). In
fact, we may assume

f1 =
∂g

∂u′′

f2 =
∂g

∂u′
u′′ +

∂g

∂u
u′ +

∂g

∂t
+ f3(t, u, u′, u′′) (22)

where f3 has to satisfy the mentioned partial differential equations and g is obviously arbitrary.
Again we stress the importance of the gauge function. In order to apply Noether’s theorem
correctly, one should not assume g ≡ const, otherwise some first integrals may not be found.

Finally, we consider any equation of order 2n > 2, i.e.

u(2n) = F (t, u, u′, . . . , u(2n−1)). (23)

In this case the Jacobi last multiplier satisfies the following equation

dM

dt
+ M

∂F

∂u(n−1)
= 0. (24)

It is easy to show that if a Lagrangian L = L(t, u, u′, . . . , u(n)) is taken such that

M =
∂2L

∂(u(n))2
(25)
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along with the constraint
∂F

∂u(2n−1)
= 0, (26)

then equation (23) becomes the Euler-Lagrange equation:

(−1)n dn

dtn

(
∂L

∂u(n)

)
+ . . . +

d2

dt2

(
∂L

∂u′′

)
− d

dt

(
∂L

∂u′

)
+

∂L

∂u
= 0. (27)

The proof consists into taking the partial derivative of (27) by u(2n−1) and showing that this
yields (24). In fact,

∂

∂u(2n−1)

(
(−1)n dn

dtn

(
∂L

∂u(n)

)
+ . . . +

d2

dt2

(
∂L

∂u′′

)
− d

dt

(
∂L

∂u′

)
+

∂L

∂u

)
=

(−1)nn
d
dt

(
∂2L

∂(u(n))2

)
+

∂2L

∂(u(n))2
∂F

∂u(2n−1)
. (28)

We underline that because of the assumption (26), then a Jacobi last multiplier M is easy
to find from equation (24), namely

M = const. (29)

If one knows a Jacobi last multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M du(n)

)
du(n) + f1(t, u, u′, . . . , u(n−1))u(n) + f2(t, u, u′, . . . , u(n−1)), (30)

where f1 and f2 are functions of t, u, u′, . . . , u(n−1) which have to satisfy some partial differential
equations related to (23). We can relate f1, f2 to the gauge function g = g(t, u, u′, . . . , u(n−1)).
In fact, we may assume

f1 =
∂g

∂u(n−1)

f2 =
∂g

∂u(n−2)
u(n−1) +

∂g

∂u(n−3)
u(n−2) + . . . +

∂g

∂t
+ f3(t, u, u′, . . . , u(n−1)) (31)

where f3 has to satisfy the mentioned partial differential equations and g is obviously arbitrary.
Again we stress the importance of the gauge function. In order to apply Noether’s theorem
correctly, one should not assume g ≡ const, otherwise some first integrals may not be found.

3 Two examples from Number Theory

3.1 A second-order equation

In [2] the following functional was introduced:
∫ π

0
y′4 + 6νy2y′2d x, (32)
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where y = y(x) ∈ C2[0, π], y(0) = y(π) = 0 and ν ≥ 0. The corresponding Euler-Lagrange
equation is

y′2y′′ + νy2y′′ + νyy′2 = 0 . (33)

If we apply Lie group analysis to this equation, we find that it admits a two-dimensional abelian
transitive Lie symmetry algebra (Type I) generated by the following two operators:

Γ1 = ∂x, Γ2 = y∂y . (34)

Then we can integrate equation (33). First, we introduce a basis of differential invariants of
Γ1, i.e.:

u =
y′

y
, v = x . (35)

Then equation (33) reduces to the following first-order equation:

du

dv
=

−νuv

νv2 + u2
, (36)

which admits the operator Γ2 in the space of variables u, v, i.e.

Γ2 = v∂v + u∂u . (37)

Then its general solution is implicitly given by:

√
u

(
2νv2 + u2

)1/4 = const (38)

and in the original variables1:

√
y′

(
2νy2 + y′2

)1/4 = const (39)

viz

y′ =

√(
νy2a1 +

√
ν2y4a2

1 + 1
)

y2a1

ya1

(
νy2a1 +

√
ν2y4a2

1 + 1
) (40)

with a1 an arbitrary constant Finally the general solution of (33) is given implicitly by:

∫ ya1

(
νy2a1 +

√
ν2y4a2

1 + 1
)

√(
νy2a1 +

√
ν2y4a2

1 + 1
)

y2a1

d y = x + a2 (41)

1The same first integral can be obtained by using Noether’s theorem (see below)
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We note that if y is positive and a1 = 1 the integral on the left-hand side could be integrated
in terms of an hypergeometric function H, namely:

1
2

√
2νy2H

([
−1

2
,
1
4
,−1

4

]
,

[
1
2
,
1
2

]
,− 1

y4ν2

)
(42)

Let us try to find a Lagrangian for equation (33) by using the Jacobi last multiplier, namely
through (2). The two Lie point symmetries (34) yield a Jacobi last multiplier. In fact the
following matrix [6], [7]: 


1 y′ −νyy′2

ν
y2 + y′2

1 0 0
0 y y′


 (43)

has determinant different from zero and its inverse is a Jacobi last multiplier, i.e.

M1 = − 2νy2 + y′2

y′2(νy2 + y′2)
. (44)

The corresponding Lagrangian is

L1 =
1

4νy

(
−
√

2νy′ arctan
(

y′√
2νy

)
+ log(2νy2 + y′2)νy + 2 log(y′)νy

)
+ f1(x, y)y′+ f2(x, y),

(45)
where f1, f2 are solutions of

∂f1

∂x
− ∂f2

∂y
= 0. (46)

If we impose the link between f1, f2 with the gauge function g(x, y), namely (6), then f3(x, y)
becomes just f3(x), an arbitrary function of the independent variable x. The Lagrangian (45)
may appear ugly. Nevertheless the corresponding variational problem admits two Noether’s
symmetries, namely both Lie symmetries given in (34) are Noether’s symmetries. Consequently
the following two first integrals of equation (33) can be found by applying Noether theorem2:

Γ1 ⇒ I1 = (2νy2 + y′2)y′2,
[
g = ex

(∫
f3(x)
ex

dx + a2

)]
(47)

Γ2 ⇒ I2 =
1

4νy′

(
−

√
(2ν)y′ arctan

(
y′√
2νy

)
+ 2νy − 4νxy′

)
, [g = s(x)y + x]. (48)

with s(x) an arbitrary function of x. We note that the first integral I1 in (47) was already
derived in (39).

2Also the corresponding gauge function g is given. It is important to remark that in the case of the first
integral (48) the gauge function g cannot be constant, while it can be constant in the case of the first integral
(47). Naturally, we have left out any inessential additive constants.
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At this point one would like to know if it is possible to obtain the original Lagrangian given
in (32), i.e.

LH = y′4 + 6νy2y′2 (49)

A property of the Jacobi last multiplier is that if one knows a Jacobi last multiplier and a
first integral then their product gives another multiplier [9]. If we take the product of the first
integral I1 (47) and the multiplier M1 (44), then we obtain another Jacobi last multiplier of
equation (33), i.e.:

M2 = −y′2 − νy2 (50)

which can be integrated twice with respect to y′ in order to yield the following Lagrangian3:

L2 = − 1
12

(y′4 + 6νy2y′2) + f1y
′ + f2, (51)

where f1, f2 are solutions of (46). It is interesting to emphasize that this Lagrangian (namely
Hall’s Lagrangian) is such that the Lie operator Γ2 in (34) does not generate a Noether’s
symmetry for the corresponding variational problem. In fact only Γ1 is the generator of a
Noether’s symmetry for Hall’s Lagrangian.

If instead of (32) we consider the functional [2]
∫ π

0
y′4 + 6νy2y′2 − 3λ(ν)y4 d x. (52)

and apply Lie group analysis to its corresponding Euler-Lagrange equation, viz:

y′2y′′ + νy2y′′ + νyy′2 + λy3 = 0 , (53)

then we obtain the same Lie symmetry algebra generated by (34) which means that (53) can
be integrated by quadrature. In fact if we introduce the same variables as in (35) then equation
(53) reduces to the following first-order equation:

du

dv
=
−v

(
λv2 + νu2

)

u (νv2 + u2)
, (54)

which can be integrated to give

λv4 + 2νu2v2 + u4 = const (55)

and in the original variables
λy4 + 2νy′2y2 + y′4 = const (56)

3Note the inessential multiplicative constant.
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a first integral of equation (53).
Also Lie group analysis implies that if λ = ν2 then equation (53) admits an eight-dimensional

Lie symmetry algebra generated by the following operators:

Γ1 = −y
(− cos(

√
νx)∂x + y

√
ν sin(

√
νx)∂y

)

Γ2 = −y
(
sin(

√
νx)∂x + y

√
ν cos(

√
νx)∂y

)

Γ3 = cos(2
√

νx)∂x − y
√

ν sin(2
√

νx)∂y

Γ4 = − sin(2
√

νx)∂x − y
√

ν cos(2
√

νx)∂y

Γ5 = ∂x (57)
Γ6 = y∂y

Γ7 = cos(
√

νx)∂y

Γ8 = − sin(
√

νx)∂y.

which means that equation (53) is linearizable or indeed linear. Indeed in this case equation
(53) is just

y′′ = −νy. (58)

In order to find Lagrangians and first integrals for equation (52) we have to repeat mutatis
mutandis the same analysis given above. We may underline that in the case of λ = ν2, namely
equation (58), we can generate 14 different Lagrangians as it was shown in [10].

3.2 A fourth-order equation

Another functional in [2] is the following:
∫ π

0
y′4 + µy2y′′2 d x . (59)

The corresponding Euler-Lagrange equation is

4µyy′y′′′ + µy2yiv + 2µy′2y′′ + 3µyy′′2 − 6y′2y′′ = 0 . (60)

If we apply Lie group analysis to this equation, we find that it admits a three-dimensional Lie
symmetry algebra generated by the following three operators:

X1 = ∂x, X2 = y∂y, X3 = x∂x , (61)

which means that we can reduce equation (60) to a first-order equation, i.e.:

dũ

dx̃
=
−7µũx̃− µũ− 6µx̃3 − 4µx̃2 + 6x̃

µũ
(62)
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with

ũ =
y′′′y2

y′3
− 2

y′′2y2

y′4
+

y′′y
y′2

, x̃ =
y′′y
y′2

. (63)

If µ = 3 then equation (60) admits an eight-dimensional Lie symmetry algebra L generated by
the following eight operators:

Λ1 = x2∂x +
3
2
xy∂y, Λ2 = x∂x, Λ3 = ∂x, Λ4 = y∂y, Λ5 =

x3

y
∂y,

Λ6 =
x2

y
∂y, Λ7 =

x

y
∂y, Λ8 =

1
y

∂y (64)

This means that equation (60), i.e.:

4y′y′′′ + yyiv + 3y′′2 = 0 (65)

is linearizable by means of a point transformation [7]. In order to find the linearizable transfor-
mation we have to find an abelian intransitive two-dimensional subalgebra of L and, following
Lie’s classification of two-dimensional algebras in the real plane [7], we have to transform it
into the canonical form

∂u, t∂u (66)

with u and t the new dependent and independent variables, respectively. We found that one
such subalgebra is that generated by Λ7 and Λ8. Then we have to solve the following four
linear partial differential equations of first order:

Λ7(t) = 0, Λ8(t) = 0, Λ7(u) = t, Λ8(u) = 1. (67)

It is readily shown that the linearizable transformation is

t = x, u = y2, (68)

and equation (65) becomes
uiv = 0. (69)

Finally, the general solution of (65) is

y =
√

a1 + a2x + a3x2 + a4x3 (70)

with ai(i = 1, 4) arbitrary constants.
We note that if we apply the transformation (68) to equation (60) in the case of any µ then
the following equation is obtained:

uiv = −(µ− 3)(2uu′′ − u′2)u′2

4µu3
(71)
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which does not contain u′′′, namely the third derivative of u by x. Therefore a constant, say
1, is a Jacobi last multiplier of equation (71), and we can obtain a Lagrangian from (21), i.e.:

L1 =
1
2
u′′2 + f1(x, u, u′)u′′ + f2(x, u, u′) (72)

where f1 and f2 satisfy (22) and f3 has to have the following expression:

f3(x, u, u′) =
(−µ + 3)u′4

24µu2
+ h1(x, u)u′ + h2(x, u) (73)

with h1, h2 arbitrary functions of x, u.
We remark that a Jacobi last multiplier of equation (60) can be derived from equation (8),

i.e.:
1
M

dM

dx
− 4

y′

y
= 0 =⇒ M = y4, (74)

although this Jacobi last multiplier is useless in order to find a Lagrangian of equation (60).
Instead, if we apply transformation (68) to (72) in order to go back to the original function
y(x), then adding also the particular assumptions f1 = −u′2/(2u), and f2 = u′4(µ + 1)/(16u2)
yield the following Lagrangian for equation (60) :

Lm1 = (µ− 1)y′4 + 2y2y′′2 (75)

which, apart from an inessential multiplicative constant, is Hall’s Lagrangian in (59).
Let us apply Noether’s theorem. If we consider the Lagrangian in (72), we find that the
following two first integrals of equation (71) can be obtained:

3
2
X3 + X1 ⇒ I1 =

1
8µu2

(12µu3u′′′ − 4µu2u′u′′ − 8µu2u′u′′′x + 4µu2u′′2x

+2µuu′3 − µu′4x− 6uu′3 + 3u′4x),

X2 ⇒ I2 =
1

8µu2
(−8µu2u′u′′′ + 4µu2u′′2 − µu′4 + 3u′4). (76)

A similar result is obtained if one uses Hall’s Lagrangian and equation (60). Moreover, if we
apply Noether’s theorem to the linearizable equation (65) with Hall’s Lagrangian, i.e.:

LH = y′4 + 3y2y′′2, (77)

we obtain the following seven first integrals4:

Λ1 ⇒ Im1 = −3y3y′′ + 3y3y′′′x + y2y′2 + 7y2y′y′′x
4Naturally, they are not all independent from each other.
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−2y2y′y′′′x2 + y2y′′2x2 − 2yy′3x− 4yy′2y′′x2 + y′4x2

3
4
Λ4 + Λ2 ⇒ Im2 = 9y3y′′′ + 21y2y′y′′ − 12y2y′y′′′x + 6y2y′′2x− 6yy′3 − 24yy′2y′′x + 6y′4x

Λ3 ⇒ Im3 = −2y2y′y′′′ + y2y′′2 − 4yy′2y′′ + y′4

Λ5 ⇒ Im5 = −3y2 + 6yy′x− 3yy′′x2 + yy′′′x3 − 3y′2x2 + 3y′y′′x3

Λ6 ⇒ Im6 = 2yy′ − 2yy′′x + yy′′′x2 − 2y′2x + 3y′y′′x2

Λ7 ⇒ Im7 = −yy′′ + yy′′′x− y′2 + 3y′y′′x
Λ8 ⇒ Im8 = yy′′′ + 3y′y′′ (78)

Although we do not write down the corresponding expressions of the gauge function, we un-
derline that it cannot always be set equal to a constant otherwise none of Im1, Im5, Im6, Im7,
and Im8 could be obtained.

All seven first integrals (and even more) may be obtained without Noether’s Theorem.
In fact we just need to find the Jacobi last multipliers of equation (65) that are obtained
by inverting the nonzero determinants of the possible 70 matrices made out of the eight Lie
symmetries (64). Then the ratio of any two multipliers is a first integral of equation (65). For
example:

C1234 =




1 y′ y′′ y′′′ −4y′y′′′ + 3y′′2

y

x2 3
2yx 3

2y − 1
2xy′ y′ − 5

2xy′′ −3
2y′′ − 9

2xy′′′

x 0 −y′ −2y′′ −3y′′′

1 0 0 0 0
0 y y′ y′′ y′′′




(79)

is the matrix obtained by considering the symmetries generated by operators Λ1,Λ2, Λ3, Λ4 in
(64); its determinant is

∆1234 = 9y′′yy′y′′′ − 2y′3y′′′ − 3
2
y′2y′′2 + 6y′′3y +

9
2
y′′′2y2, (80)

and the corresponding Jacobi last multiplier is:

M1234 =
1

∆1234
=

1
18y′′yy′y′′′ − 4y′3y′′′ − 3y′2y′′2 + 12y′′3y + 9y′′′2y2

. (81)

Similarly, the matrix C5678 yields the determinant ∆5678 = 12/y4, i.e. the Jacobi last multi-
plier5:

M5678 = y4 (82)
5The multiplicative constant is inessential.
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which we have already found in (74) as an obvious solution of (8). Note that

M5678

M1234
= y4(18y′′yy′y′′′ − 4y′3y′′′ − 3y′2y′′2 + 12y′′3y + 9y′′′2y2) (83)

is “another” first integral of equation (65).

4 Final remarks

DRAFT
The following remarks should be enlightened and kept in mind:

• The most efficient Lagrangian, namely that which allows the most number of Noether’s
symmetries, may not be the Lagrangian with the simplest form.

• Lie symmetries are the key tool for finding Jacobi last multipliers and therefore La-
grangians.

In [1] the necessary and sufficient conditions under which a fourth-order equation (7) admits
a unique Lagrangian were determined, namely:

∂3F

∂(u′′′)3
= 0 (84)

∂F

∂u′
+

1
2

d2

dt2

(
∂F

∂u′′′

)
− d

dt

(
∂F

∂u′′

)
− 3

4
∂F

∂u′′′
d
dt

(
∂F

∂u′′′

)
+

1
2

∂F

∂u′′
∂F

∂u′′′
+

1
8

(
∂F

∂u′′′

)3

= 0. (85)

Not surprisingly both equation (60) and (71) satisfy those two conditions.
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