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Abstract

We derive Lagrangians of classic models in biology, such the Lotka-Volterra system.

1 Introduction

“Among the mathematical results obtained by studying the inverse problem of mechanics, it
is the explicit algorithms for constructing Lagrangians that offer the model builder the most
practical benefit.” [14].

It is well-known that a Lagrangian always exists for any second-order ordinary differential
equation [18].

[11] and the references within.
”What are the criteria that a system of ordinary differential equations must satisfy to assure

the existence of a Lagrangian?” [14].
”Does there exist an algorithm that enables one to construct the Lagrangian from the

dynamical equations?” [14].
p.756 equation (27) [14] g is actually the JLM of system (21) for n=2
”These results clearly show that as the interaction between the populations becomes more

complex the corresponding Lagrangian becomes more complicated and difficult to find” [16].
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2 The method by Jacobi

The method of the Jacobi last multiplier ([2], [3], [4], [5]) provides a means to determine all
the solutions of the partial differential equation

Af =
n∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (1)

or its equivalent associated Lagrange’s system

dx1

a1
=

dx2

a2
= . . . =

dxn

an
. (2)

In fact, if one knows the Jacobi last multiplier and all but one of the solutions, then the last
solution can be obtained by a quadrature. The Jacobi last multiplier M is given by

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= MAf, (3)

where

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= det




∂f

∂x1
· · · ∂f

∂xn
∂ω1

∂x1

∂ω1

∂xn
...

...
∂ωn−1

∂x1
· · · ∂ωn−1

∂xn




= 0 (4)

and ω1, . . . , ωn−1 are n − 1 solutions of (1) or, equivalently, first integrals of (2) independent
of each other. This means that M is a function of the variables (x1, . . . , xn) and depends on
the chosen n− 1 solutions, in the sense that it varies as they vary. The essential properties of
the Jacobi last multiplier are:

(a) If one selects a different set of n − 1 independent solutions η1, . . . , ηn−1 of equation (1),
then the corresponding last multiplier N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)
∂(ω1, . . . , ωn−1)

.

(b) Given a non-singular transformation of variables

τ : (x1, x2, . . . , xn) −→ (x′1, x
′
2, . . . , x

′
n),
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then the last multiplier M ′ of A′F = 0 is given by:

M ′ = M
∂(x1, x2, . . . , xn)
∂(x′1, x

′
2, . . . , x

′
n)

,

where M obviously comes from the n− 1 solutions of AF = 0 which correspond to those
chosen for A′F = 0 through the inverse transformation τ−1.

(c) One can prove that each multiplier M is a solution of the following linear partial differ-
ential equation:

n∑

i=1

∂(Mai)
∂xi

= 0; (5)

viceversa every solution M of this equation is a Jacobi last multiplier.

(d) If one knows two Jacobi last multipliers M1 and M2 of equation (1), then their ratio is a
solution ω of (1), or, equivalently, a first integral of (2). Naturally the ratio may be quite
trivial, namely a constant. Viceversa the product of a multiplier M1 times any solution
ω yields another last multiplier M2 = M1ω.

There is an obvious corollary to the results of Jacobi mentioned above. In the case that
there exists a constant multiplier, then any other Jacobi Last Multiplier is a first integral.

Another property of the Jacobi Last Multiplier is its (almost forgotten) relationship with
the Lagrangian, L = L(t, x, ẋ), for any second-order equation

ẍ = F (t, x, ẋ) (6)

is [5], [18]

M =
∂2L

∂ẋ2
(7)

where M = M(t, x, ẋ) satisfies the following equation

d
dt

(log M) +
∂F

∂ẋ
= 0. (8)

Then equation (6) becomes the Euler-Lagrangian equation:

− d
dt

(
∂L

∂ẋ

)
+

∂L

∂x
= 0. (9)

The proof is given by taking the derivative of (9) by ẋ and showing that this yields (8). If one
knows a Jacobi last multiplier, then L can be easily obtained by a double integration, i.e.:

L =
∫ (∫

M dẋ

)
dẋ + f1(t, x)ẋ + f2(t, x), (10)
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where f1 and f2 are functions of t and x which have to satisfy a single partial differential
equation related to (6) [12]. As it was shown in [12], f1, f2 are related to the gauge function
F = F (t, x). In fact, we may assume

f1 =
∂F

∂x

f2 =
∂F

∂t
+ f3(t, x) (11)

where f3 has to satisfy the mentioned partial differential equation and F is obviously arbitrary.

3 Some biological examples from [16]: Non Linear Lagrangians
for second-order equations

3.1 Volterra-Lotka

The Volterra-Lotka model considered by [16] is the following:

ẇ1 = w1(a + bw2)
ẇ2 = w2(A + Bw1). (12)

We note that there is an obvious autonomous first integral, namely

I1 = Bw1 − bw2 + A− a log(w2) + A log(−Bw1) (13)

which can be obtained by a simple quadrature from the equation

dw1

dw2
=

w1(a + bw2)
w2(A + Bw1)

. (14)

In order to simplify system (12) we follow [16] and introduce the change of variables

w1 = exp(r1), w2 = exp(r2) (15)

and then system (12) becomes

ṙ1 = b exp(r2) + a

ṙ2 = B exp(r1) + A. (16)

We can transform this system into an equivalent second-order ordinary differential equation
by eliminating, say, r1. In fact from the second equation in (16) one gets

r1 = log
(

ṙ2 −A

B

)
, (17)
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and the equivalent second-order equation in r2 is the following

r̈2 = −
(
b exp(r2) + a

)
(A− ṙ2). (18)

A Jacobi Last Multiplier for this equation has to satisfy equation (8), i.e.:

d
dt

(log M) + b exp(r2) + a = 0 (19)

or
d
dt

(log M) + ṙ1 = 0, (20)

by taking into account the first equation in (16), and consequently we get the following Jacobi
Last Multiplier for equation (18):

M1 = exp(−r1) =
B

ṙ2 −A
, (21)

the last equality being true thanks to (17). Then a Lagrangian can be easily obtained by a
double integration as in (10), i.e.

L1 = B
(
(ṙ2 −A) log(A− ṙ2)− ṙ2 + b exp(r2) + ar2

)
+ Ḟ (t, r2). (22)

The same Lagrangian (minus the gauge function F ) was obtained in [16] by using an ad
hoc method. In order to show the power of the Jacobi’s method we derive at least another
Lagrangian for equation (18).

We note that (18) is autonomous and therefore invariant under time translation. It is easy
to show that the Lagrangian L1 in (22) yields a time-invariant first integral, namely (13),
through Noether’s theorem [10], which yields the following first integral if L is invariant under
time translation:

−L + ẋ
∂L

∂ẋ
+ F (t, x) = const (23)

As a consequence of the property (d) of the Jacobi last multiplier, the product of a Jacobi last
multiplier M1 as in (21) and a first integral I1 as in (13) of equation (18) yields another Jacobi
last multiplier, i.e.

M2 = M1I1 =
B2

A− ṙ2

(
ar2 − ṙ2 −A log(A− ṙ2) + b exp(r2)

)
(24)

and therefore we can obtain a second Lagrangian of equation (18), i.e.

L2 = −B2

2

(
(A log(A− ṙ2)− 2ar2) (A− ṙ2) log(A− ṙ2)

−(2ar2 + ṙ2)ṙ2 − 2b exp(r2) ((A− ṙ2) log(A− ṙ2) + ṙ2)

+b2 exp(2r2) + 2abr2 exp(r2) + a2r2
2

)
+ Ḟ (t, r2) (25)
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This Lagrangian yields another time invariant first integral which is just the square of I1 in
(13).
We can keep using property (d) to derive more and more Jacobi last multipliers and therefore
Lagrangians of equation (18). In fact other Jacobi last multipliers can be obtained by simply
taking any function of the first integral I1 in (13) and multiplying it for either M1 in (21) or
M2 in (24), and so on ad libitum.

We would like to point out that a Jacobi Last Multiplier for system (16) is a constant,
and therefore by using property (b) we can easily derive a Jacobi Last Multiplier for the
Volterra-Lotka system (12). In fact we have to calculate the Jacobian of the transformation
(15) between (w1, w2) and (r1, r2) and this yields a Jacobi Last Multiplier of system (12), i.e.

M[w] = M[r]
∂(r1, r2)
∂(w1, w2)

=

∣∣∣∣∣∣∣

1
w1

0

0
1
w2

∣∣∣∣∣∣∣
=

1
w1w2

. (26)

Then the system (12) is completely integrable as it was shown by Jacobi himself [1]: a system
of two first-order ordinary differential equations is completely solved when one knows a first
integral and a Jacobi Last Multiplier [5].

3.2 Gompertz

The Gompertz’s model considered by [16] is the following:

ẇ1 = w1

(
A log

(
w1

m1

)
+ Bw2

)

ẇ2 = w2

(
a log

(
w2

m2

)
+ bw1

)
. (27)

In order to simplify system (27) we follow [16] and introduce the change of variables

w1 = m1 exp(r1), w2 = m2 exp(r2) (28)

and then system (27) becomes

ṙ1 = m2B exp(r2) + Ar1

ṙ2 = m1b exp(r1) + ar2. (29)

It is easy to derive a Jacobi Last Multiplier for this system from (5), i.e.

d
dt

log
(
M[r]

)
= −(a + A) =⇒ M[r] = exp[(−a + A)t] (30)
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We can transform system (29) into an equivalent second-order ordinary differential equation
by eliminating, say, r2. In fact from the second equation in (29) one gets

r2 = log
(

ṙ1 −Ar1

Bm2

)
, (31)

and the equivalent second-order equation in r2 is the following

r̈1 =
(

bm1 exp(r1) + a log
(

ṙ1 −Ar1

Bm2

))
(ṙ1 −Ar1) + Aṙ1. (32)

Using property (b) a Jacobi Last Multiplier for this equation can be obtained. In fact we have
to calculate the Jacobian of the transformation between (r1, r2) and (r1, ṙ1), namely (31) and
this yields a Jacobi Last Multiplier of equation (32), i.e.1

M1 = M[r]
∂(r1, r2)
∂(r1, ṙ1)

= exp[−(a + A)t]
1

ṙ1 −Ar1
. (33)

Then a Lagrangian can be easily obtained by a double integration as in (10), i.e.

L1 = exp[−(a + A)t]
(
(ṙ1 −Ar1) log(ṙ1 −Ar1) + m1b exp(r1)− ar1 log(Bm2)− ar1

)
+ Ḟ (t, r1).

(34)
The same Lagrangian (minus the gauge function F ) was obtained in [16] by using an ad hoc
method.
Finally property (b) yields a Jacobi Last Multiplier for the Gompertz’s system (27). The
product of M[r] in (30) with the Jacobian of the transformation (28) between (w1, w2) and
(r1, r2) yields the following Jacobi Last Multiplier of system (27), i.e.

M[w] = M[r]
∂(r1, r2)
∂(w1, w2)

= exp[−(a + A)t]

∣∣∣∣∣∣∣

1
w1

0

0
1
w2

∣∣∣∣∣∣∣
= exp[−(a + A)t]

1
w1w2

. (35)

3.3 Verhulst

The Verhulst’s model considered by [16] is the following:

ẇ1 = w1(A + Bw1 + f1w2)
ẇ2 = w2(a + bw2 + f2w1). (36)

In order to derive a Jacobi Last Multiplier for this system from (5), i.e.

d
dt

log
(
M[w]

)
+ (2B + f2)w1 + (2b + f1)w2 + a + A = 0 (37)

1Of course, we do not consider any multiplicative constants because they are inessential.
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we assume that M[w] has the following form:

M[w] = wb1
1 wb2

2 exp(b3t), (38)

where bi, (i = 1, 2, 3) are constants to be determined. Replacing this M[w] into (37) yields

b1 =
−2Bb + bf2 + f1f2

Bb− f1f2
(39)

b2 =
−2Bb + Bf1 + f1f2

Bb− f1f2
(40)

b3 =
ABb−Abf2 + aBb− aBf1

Bb− f1f2
, (41)

if Bb − f1f2 6= 0, and therefore if no condition is imposed on the parameters in Verhulst’s
model.

We follow [16] and introduce the change of variables

w1 = exp(r1), w2 = exp(r2) (42)

and then system (36) becomes

ṙ1 = A + B exp(r1) + F exp(r2)
ṙ2 = a + b exp(r2) + f exp(r1). (43)

We can transform this system into an equivalent second-order ordinary differential equation
by eliminating, say, r2. In fact from the second equation in (46) one gets

r1 =, (44)

and the equivalent second-order equation in r1 is the following

r̈1 = . (45)

3.4 Host-Parasite

A simple mathematical model which describes the interaction between a host and its parasite
and which takes into account the non-linear effects of the host population size on the growth
rate of the parasite population is given by the equations (Leslie & Gower, 1960)

Ḣ = (a− bP )H

Ṗ =
(

A−B
P

H

)
P. (46)
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4 Final remarks

AS stated by Paine [14], “This gives one hope of finding an integral or constant of motion for
the dynamical system of interest without the hardship of solving the system of equations.”
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