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Formal group laws

Let R be a commutative ring with identity

R{xl, xz,m} be the ring of formal power series with coefficients in R

Def1 A one-dimensional formal group law over R is a formal power series ®(x, y)e Ri{x. y}s.t.

®(x,0)=P(0,x)=x
(@ (x, ). )= @(x,®(y,2))

When @(x,y)=®(y,x) the formal group is said to be commutative.
3 a unique formal series ¢(x)e R{x} such that ®(x,¢(x))=0

Def 2 An n-dimensional formal group law over R is a collection of n formal power series

(I)j(xl,---, Xys Viseeos yn) in 2n variables, such that
®(x,0)=x

(I)(X, q)(Ya Z)) = (I)((I)(x, Y)a Z)



Examples

1) The additive formal group law

(ID(x, y) =x+Yy
2) The multiplicative formal group law

P(x,y)=x+y+xy
3) The hyperbolic one ( addition of velocities in special relativity)

®(x,y)=(x+ y)/(1+xy)
4) The formal group for elliptic integrals (Euler)
®(x. y)=[eyf1= 3" + 1= i1+ %y?)

Indeed:




Connection with Lie groups and algebras

« More generally, we can construct a formal group law of dimension n from any algebraic
group or Lie group of the same dimension n, by taking coordinates at the identity and
writing down the formal power series expansion of the product map. An important special
case of this is the formal group law of an elliptic curve (or abelian variety)

* Viceversa, given a formal group law we can construct a Lie algebra.

Let us write:
CID(x,y) =x+ y+CI>2(x, y)+<I>3(x, y)+...

defined in terms of the quadratic part ®,(x,y) :
Any n- dimensional formal group law gives an n dimensional Lie algebra over the ring R,
[X’ y] = (I)Z(X’ y)_ (I)z(y,X)

Algebraic groups —— Formal group laws — Lie algebras

* Bochner, 1946
e Serre, 1970 -

* Novikov, Bukhstaber, 1965 -



Def. 3. Let ¢,c,,.. beindeterminates over Q The formal group logarithm is
2 3

s s
F(s)= S+C13+C2?+...
The associated formal group exponential is defined by

2 3

G(t)=t—q%+ (3¢2 —2c2)%+...
so that F(G(r))=1

Def 4. The formal group defined by ®(s;,s,)=G(F(s,)+ F(s,)) is called

the Lazard Universal Formal Group
The Lazard Ring is the subring of Q[Cl, C2,...] generated by the coefficients of the

power series  G(F (s, )+ F(s,))

* Algebraic topology: cobordism theory
* Analytic number theory
* Combinatorics

Bukhstaber, Mischenko and Novikov : All fundamental facts of the theory of unitary

cobordisms, both modern and classical, can be expressed by means of Lazard’s formal group.

Given a function G(t), there is always a delta difference operator
with specific properties whose representative is G(t)




Main idea

The theory of formal groups is naturally connected with
finite operator theory.

It provides an elegant approach to discretize continuous
systems, in particular superintegrable systems, in a
symmetry preserving way

Such discretizations correspond with a class of interesting
number theoretical structures (Appell polynomials of
Bernoulli type, zeta functions), related to the theory of
formal groups.



Introduction to finite operator theory

Silvester, Cayley, Boole, Heaviside, Bell,.. =~ Umbral Calculus
Dx" =nx"" A(x) =n(x) (x), =x(x=7).(x—n+7/)

oo (o)

oy =3[t ), =2 oo

k=0 k=0

G. C. Rota and coll., M.I.T., 1965-
e Di Bucchianico, Loeb (Electr.J. Comb., 2001, survey)

F =F[[t]]l, P=P[{] fe F— f(r)=i—r
<f(t) x">:an <l‘k ,
o = {(")kx , k=<n f(t)x" _ i(”jakxnk

0, k>n

algebra of f.p.s.

F algebra isomorphic to P*
subalgebra of L (P)

F : subalgebra of shift-invariant operators [Tf (x]) = flx+0)
’ S, T|=0



p,(x) polynomial in x of degree n.

Det'5. Qe€F isadeltaoperatorif Qx=c #0.
Def 6. {p,(x)} _xis a sequence of basic polynomials for Q if

op,(x)=np,_,(x)
po(x)=1 p,(0)=0 Vn

Q€ F, - W, (0 on
Def 7. An umbral operator R is an operator mapping basic sequences into basic sequences:

(M, =1, (s

Finite operator theory and Algebraic Topology
, .

E: complex orientable spectrum AN =D+, % +..+c, DT +...
. l.

A

0,

Appell polynomials

by dal=nal)  a)=c#0



Additional structure in F : Heisenberg-Weyl algebra

D. Levi, P. T. and P. Winternitz, J. Math. Phys. 2004,
D. Levi, P. T. and P. Winternitz, Phys. Rev. D, 2004

Q: delta operator, S€ F, [0, xB]=1
Lemma a) 8= (Q)", 0'=[0.x]

b) [0.(xp) |= alxB)
{(x,B ) }ne v - basic sequence of operators for Q

R: L(P) — L(P)

{(X,Bl ) }ne N —r_, {(xlb’2 ) }ne N {x” }ne - K — {(X,B ) }neN

N

| | T

R
Q1 < R . Q2 a —— A

X




Delta operators, formal groups and basic sequences

A, =éiakT" LmeZ Ya=0 ka =1 A, xB]=1
h (Formal glk'oup expoknentials)
Simplest example: Q=9d, =1 p =x"
Discrete derivatives:
0-8 =120 B pl)=) =e-ohle—(n-1o)

Theorem 1: The sequence of polynomials P, (x)= x = (xB) -1 satisfies:
A qxn[Q] = nxn_l[Q] Do (x)=1 p.(0)=0 i
0] _ <[] ‘ " =3 51, k), ! iS[Q](n k)ﬁ:M
5= 3 k) X =25 k) > VT T

S[Q](n, k) g:eneralized Stirling numbers of first kind

S%(n,k) generalized Stirling numbers of second kind

(e y)g =i[:jxk“]ynk“] vge  Appell property)
k=0

Zs[q](n,k)s[q](k,m) =y S (n, k)5 (k,m) =5, ,
k

k



Finite operator theory and Lie Symmetries

seeesll

nx

Ea(x,u,ux,ux )=O, xeRP, ue R',a=1,....s

X

e\

X generator of a symmetry group X Zp“gi (x,u)o, + Zq: 0, (x,up,

i a=1

Invariance condition (Lie’s theorem):

pr("))A( E

a

E=.E,=0

I) Generate classes of exact solutions from known ones.
IT) Perform Symmetry Reduction:

a) reduce the number of variables in a PDE and obtain particular solutions
satisfying certain boundary conditions: group invariant solutions.

b) reduce the order of an ODE.

IIT) Identify equations with isomorphic symmetry groups.
They may be transformed into each other.



Many kinds of continuous symmetries are known:
group invariant sol.

Classical Lie-point symmetries ———___ part. invariant sol.

contact symmetries

*Higher-order symmetries generalized symmetries

master symmetries
conditional symmetries

*Nonclassical symmetries partial symmetries

, _ A symmetries
e Approximate symmetries

eNonlocal symmetries (potential symmetries, theory of coverings,
WE prolongation structures, pseudopotentials, ghost symmetries...)
etc. (A. Grundland, P. T. and P. Winternitz, J. Math. Phys. (2003))

Problems: how to extend the theory of Lie symmetries to Difference Equations?

how to discretize a differential equation in such a way that its symmetr
properties are preserved?



Generalized point symmetries of Linear
Difference Equations

e D. Levi, P. T. and P. Winternitz, JMP, 2004

Reduce to classical point symmetries in the continuum limit.

Operator equation

Family of linear difference
equations




Theorem 2

Let E be a linear PDE of order n = 2 or a linear ODE of order n = 3 with constants or
polynomial coefficients and E =R E be the corresponding operator equation. All
difference equations obtained by specializing and projecting E possess a subalgebra of
Lie point or higher-order symmetries isomorphic to the Lie algebra of symmetries of E.

* Differential equation Z Ckaxk f (x) =0
k=0

* Operator equation ZCkaf (xB)=0
k=0

Family of difference equations

0=8, Yan'F()=0  Flx)=(#)1= (A ()

{P.(x)} _, : basic sequence for A,

Consequence: two classes of symmetries for linear PA Es

Generalized point symmetries < R, [som. to cont. symm.

Purely discrete symmetries < » No continuum limit




Superintegrable Systems in Quantum Mechanics

* Classical mechanics Symplectic manifold (M, @)
e Integral of motion: {H,F}=0 B_F -0
ot
e Quantum mechanics Hilbert space: [ (R” , ﬂ)
: oX
e Integral of motion: [H , X ] =0 > =0

/ Integrable [ =pn

A system 1s said to be \ Superintegrable I > n

e minimally superintegrable if [=n+1

e maximally superintegrable if [=2n-1



Stationary Schroedinger equation (in £ ,)

H')”:E';” H=—%V2+V(x,y)

Generalized symmetries
Superintegrability
Exact solvability

* M.B. Sheftel, P. T. and P. Winternitz, J. Math. Phys. (2001)
e A. Turbiner, P. T. and P. Winternitz, J. Math. Phys (2001).

There are four superintegrable potentials admitting two integrals of motion which are
second order polynomials in the momenta:

V, = a)z(x2 + yz)+%+£2 Vi =a)2(4x2 +y2)+%+bx
X Y

Vig=—+ 2 | 2
"2 sin? o G +1]

a 1 (b+ccosz§‘) v :2‘”'[95"'077
v
r
Smorodinski-Winternitz potentials

They are superseparable



General structure of the integrals of motion

X :aL32+b(L3P1 +P1L3)+C(L3P2 +P2L3)+d(P12_P22)
+2ePP, +od,+ P, + ¢(x, y)
|H,X]=0
with
Plzax Pzzay L3=y8x—x8y

The umbral correspondence immediately provides us
with discrete versions of these systems.

H,S' = —%(sz +Ay2)+%2[(x,8x)2 +(y,By)2] +%(X,3x)_2 +%(y,3y)2

R RN AN TS AR

lHID,XD1J=O



Exact solvability in quantum mechanics
Spectral properties and discretization

Def 8. A quantum mechanical system with Hamiltonian H is called exactly solvable if its
complete can be calculated

Its Hilbert space S of bound states consists of a flag of finite dimensional vector spaces
S, S, cS,...cs, C..
preserved by the Hamiltonian:
HS, C S,

The bound state eigenfunctions are given by ¥ (X)=g(X)P(5)

The Hamiltonian can be written as:

H = ghg™ hP, = E,P,

h=aJ, +b;J 'J’ J, generate aff(n,R)



Generalized harmonic oscillator
V =¥+ y2)+%+—2

) 2 + 2
Gauge factor: g=x"y" eXp{— x 5 z )} a=p(p,~1) b= p,(p,—1)

After a change of variables, the first superintegrable Hamiltonian becomes
h=-2J.J,-2J,J,+2J,+2],—(2p,+1)J,—(2p, +1)J,
where

J| :aslvjz :asz",3 :Slasl"lél :Szaszvjs :SZasl’J6 :Slas2

It preserves the flag of polynomials
F, (Sl’ Sz) = <(S1 )Nl (Sz )NZ

The solutions of the eigenvalue problem are Laguerre polynomials

0<N,+N,<n)

HP =E P Pn(x,y)=Ln(_U2+pl)(60x2)L (—1/2+p2)(wyz)

mn mn-— mn m, m



Discretization preserving the H-W algebra

h==2J,0,-2J,J,+2J,+2J,—(2p,+1)J, - (2p, +1)J,

~

J=A ’jz =As2"73 Z(Slﬂl)Asl’jél 2(52132)As2

1

The commutation relations between integrals of motion as well as the spectrum
and the polynomial solutions are preseved. No convergence problems arise.

Let us consider a linear spectral problem

L, x)y(x)= Ay(x)

|

LA (p)=2plB)
W(x):Zakxk l//(xlb’)-1=2akxk[q]

All the discrete versions of the e.s.hamiltonians obtained preserving the Heisenberg-
Weyl algebra possess at least formally the same energy spectrum. All the polynomial
eigenfunctions can be algebraically computed.



Applications in Algebraic
Number Theory:

Generalized Riemann zeta
functions
and
New Bernoulli — type
Polynomials



Formal groups and finite operator theory
To each delta operator it corresponds a realization of the
universal formal group law

Given a symmetry preserving discretization, we can associate
it with a formal group law, a Riemann-type zeta function and
a class of Appell polynomials

Symmetry preserving
dscretization

Generalized Bernoulli

Formal groups Zeta Functions

structures

\ Hyper functions /




Formal groups and number theory

m We will construct L - series attached to formal
group exponential laws.

m These series are convergent and generalized the
Riemann zeta function

B The Hurwitz zeta function will also be
generalized




Theorem 3 Let G(t) be a formal group exponential of the form (2 ), such that 1/G(t)

isa C™ function over R.,rapidly decreasing at infinity.

1) The function

/ _ 1 > 1 s—1
L(G,s)_T(S)A cot e

defined for He s > 1 3dmits an holomorphic continuation to the whole C

and, for every n € M we have

&

B .
L(G,—n)=(-1)" n?’:’i € Qle, ea, ...

1) Assume that G(t) is of the form (5). For Re s > 1 the function L(G,s) has a representation

in terms of a Dirichlet series

where the coefficients an, € Qle;,ca,...] are obtained from the formal expansion

i1) Assuming that G(t) > e* — 1, the series for L(G;,s) 1s absolutely and uniformly convergent

30 | o0
Qan | 1

E —| < E _
ns| — .H.HE;S

n=1 =1

for Re s = 1and




Generalized Hurwitz functions

Def. 9 Let G (t) be a formal group exponential of the type (4). The generalized Hurwitz
zeta function associated with G 1s the function I(G, s, a) defined for Re s > 1 by

x(1-a)

1 p~e 1 = a
L.\s,a):= Tdix=) —4—
it~ 1 B Y
Theorem 4. .
L(-na)=- 2t

n+l1

iLG (s,a)= —sL, (s+1,a)
da

Lemma 1 (Hasse-type formula):

1 log(l+A) ., 1 &(-10 ., o
L , — s _ An s
A o N s—1,§; o
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Bernoulli polynomials and numbers

B, (x)tk
k!

' w_ N
¢ =X
k=0

1 1
-0 - : B =1,B,=——,B, =—, B
x = 0 : Bernoulli numbers B, | S = 30 1708 30

Fermat’s Last Theorem and class field theory (Kummer)
Theory of Riemann and Riemann-Hurwitz zeta functions
Measure theory in p-adic analysis (Mazur)

Interpolation theory (Boas and Buck)

Combinatorics of groups (V. I. Arnol’d)

Congruences and theory of algebraic equations
Ramanujan identities: QFT and Feynman diagrams

GW 1nvariants, soliton theory (Pandharipande, Veselov)

More than 1500 papers!



Congruences

I. Clausen-von Staudt

If p 1s a prime number for which p-1 divides k, then

1
B, + Y —eZ
II. Kummer p-il2k P

Let 72, n be positive even integers such that m=n=0 (mod p-1),

where p is an odd prime. Then

B, B
—=—", modpZ,
m n

Relation with the Riemann zeta function:

=1 e B,

g(s):ZT:H(l_P )1 F(l-n)=-

n=l1 n p n

. . - 1
Hurwitz zeta function: a)=

u u & (s,a) nzz;‘ (ira)
. 1 7 e™
: ,a)= d

Integral representation E(s,a) ) '([ —— x"dx
Special values: 4 (— n, a) =— B, (a)



Universal Bernoulli polynomials

Def. 10. LetC,, C,,... be indeterminates over (Q . Consider the formal group logarithm

( ) 2 §3
F\s)=s+¢,—+c¢c,—+... (1)
2?3
and the associated formal group exponential
£ ) r (2)

so that F (G(t )=t The universal Bernoulli polynomials B/, (x,¢pennc,...)= B/, (x)

are defined by e Y k
@)

G !
WAL (3)

k=0

Remark. Whena =1and¢, = (—1) then we obtain the classical Bernoulli polynomials

Def. 11. The universal Bernoulli numbers are defined by (Clarke)

t ) o tf
o)~z (4)



Properties of UBP

.03} .00 o) =37 B e, )

k=0 k k=0
Generalized Raabe’s multiplication theorem
G'(t
#,,00= (- S0 o 0
Universal Clausen — von Staudt congruence (1990)
o (e=1)

p—1
P

If n is even, Bn=-— >

rp—1|n
pprime

mod Zlei,ca, . ]:

Ce
2
Theorem 4. Let h > 0, k > 0, n be integers. Consider the polynomials defined by

t xt = tk
—e" = By (z) —,
G (t) ;U £ (%) 3

If n is odd and greater than 1, B = mod Zlci,ca,..].

Assume that ¢p—1 = 1 mod p for all primes p = 2. Then

— {h
k"BE (E) €Zler, e, ...

o™ i

where BS (z) = BS (x) — Bn.



Main result: correspondence between delta operators, formal groups,
Symmerry preserving discretizations and algebraic number theory

< Symmetry-preserving discretization of linear PDEs
class of Riemann zeta functions, Hurwitz zeta

functions, Appell polynomials of Bernoulli-type

* Finite operator approach for describing symmetries of nonlinear difference equations

e Semigroup theory of linear difference equations and finite operator theory

* g-estensions of the previous theory




