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FormalFormal group lawsgroup laws
LetLet R R bebe a commutative ring a commutative ring withwith identityidentity

{ },..., 21 xxR be the ring of formal power series with coefficients in R

Def 1. A one-dimensional formal group law over R is a formal power series ( ) { }yxRyx ,, ∈Φ s.t. s.t.

( ) ( ) xxx =Φ=Φ ,00,

( )( ) ( )( )zyxzyx ,,,, ΦΦ=ΦΦ  

When ( ) ( )xyyx ,, Φ=Φ the formal group is said to be commutative.

∃ a  unique formal series ( ) { }xRx ∈ϕ such that ( )( ) 0, =Φ xx ϕ

Def 2. An n-dimensional formal group law over R is a collection of n formal power series

( )
nnj

yyxx ,...,,,..., 11Φ in  2n variables, such that

( ) xxΦ =0,

( )( ) ( )( )z,yx,ΦΦzy,Φx,Φ =



( ) yxyx +=Φ ,

( ) xyyxyx ++=Φ ,

1) The additive formal group law

2) The multiplicative formal group law

3) The hyperbolic one ( addition of velocities in special relativity)

( ) ( ) )1/(, xyyxyx ++=Φ

( ) ( ) ( )2244 1/11, yxxyyxyx +−+−=Φ

4) The formal group for elliptic integrals (Euler)

Indeed:
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Connection Connection withwith LieLie groupsgroups and and algebrasalgebras

( ) ( ) ( ) ...,,, 32 +Φ+Φ++=Φ yxyxyxyx

( )yx,2Φ

Let us write:

Any n- dimensional formal group law gives an n dimensional Lie algebra over the ring R, 

defined in terms of the quadratic part : 

[ ] ( ) ( )xyΦyxΦyx 22 ,,, −=

• More generally,  we can construct a formal group law of dimension n from any algebraic

group or Lie group of the same dimension n, by taking coordinates at the identity and 

writing down the formal power series expansion of the product map. An important special 

case of this is the formal group law of an elliptic curve (or abelian variety)

• Viceversa, given a formal group law we can construct a Lie algebra.

Algebraic groups            Formal group laws Lie algebras

• Bochner, 1946

• Serre, 1970 -

• Novikov, Bukhstaber, 1965 -



The associated formal group exponential is defined by

( ) ( ) ...
6

23
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1 +−+−=
t

cc
t

cttG

so that ( )( ) ttGF =

( ) ( ) ( )( )2121, sFsFGss +=ΦDef 4.   The formal group defined by

the Lazard Universal Formal Group

The Lazard Ring is the subring of [ ],..., 21 ccQ generated by the coefficients of the

power series ( ) ( )( )21 sFsFG +

Bukhstaber, Mischenko and Novikov : All fundamental facts of the theory of unitary

cobordisms, both modern and classical, can be expressed by means of Lazard’s formal group. 

• Algebraic topology: cobordism theory

• Analytic number theory

• Combinatorics

is called

Def. 3. Let ,..., 21 cc be indeterminates over Q The formal group logarithm is

( ) ...
32

3

2

2

1 +++=
s

c
s

cssF

Given a function G(t), there is always a delta difference operator

with specific properties whose representative is G(t)



MainMain ideaidea

�� The The theory of formal groups is naturally connected with theory of formal groups is naturally connected with 

finitefinite operator operator theory. theory. 

�� ItIt providesprovides anan elegantelegant approachapproach toto discretizediscretize continuouscontinuous

systems, in particular superintegrable systems, insystems, in particular superintegrable systems, in aa

symmetrysymmetry preservingpreserving wayway

�� SuchSuch discretizationsdiscretizations correspond with acorrespond with a class of class of interestinginteresting

numbernumber theoreticaltheoretical structuresstructures ((AppellAppell polynomialspolynomials of of 

BernoulliBernoulli typetype, zeta , zeta functionsfunctions), ), relatedrelated toto the the theorytheory of of 

formalformal groupsgroups..



IntroductionIntroduction toto finite operator finite operator theorytheory

• G. C. Rota and coll., M.I.T., 1965-

Umbral Calculus• Silvester, Cayley, Boole, Heaviside, Bell,.. 
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• Di Bucchianico, Loeb (Electr.J. Comb., 2001, survey)
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Def 5. Q F is a delta operator if Q x = c 0.

: polynomial in x of degree n.

Def 6. is a sequence of basic polynomials for Q if

( )xpn

( ) ( )xnpxQp nn 1−=

( ){ }
Ν∈nn xp

( ) 10 =xp ( ) npn ∀=     00

Q F ( ){ }
Ν∈nn xp

Def 7. An umbral operator R is an operator mapping basic sequences into basic sequences:

( ){ } ( ){ }
21 QnnQnn xqxp

ΝΝ ∈∈
=

s

s

� Finite operator theory and Algebraic Topology
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EE: complex orientable spectrum
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Additional structure in F : HeisenbergHeisenberg--WeylWeyl algebra
s

F ,    
s

[Q, x ] = 1Q: delta operator,

D. Levi, P. T. and P. Winternitz, J. Math. Phys. 2004, 

D. Levi, P. T. and P. Winternitz, Phys. Rev. D, 2004

Lemma a) = ,    ( ) 1
'

−
Q

b)                      ( )[ ] ( ) 1
,

−
=

αα βαβ xxQ
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n
x ∈β :  basic sequence of operators for Q
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DeltaDelta operators, formal groupsoperators, formal groups and basic and basic sequencessequences
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Theorem 1: The sequence of polynomials satisfies:

: generalized Stirling numbers of first kind
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: generalized Stirling numbers of second kind
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Simplest example:
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= 1

1−= Tβ

Discrete derivatives:

β

(Formal group exponentials)



Finite operator Finite operator theorytheory and and LieLie SymmetriesSymmetries

S: ( ) saRuRxuuuuxE qp

nxxxxa ,...,1,,,0,...,,,, =∈∈=      

( ) ( )
α

α
αϕξ u

p

i

q

xi uxuxX
i

∂+∂=∑ ∑
= =1 1

,,ˆ: generator of a symmetry groupX̂

( ) saEXpr
sEEa

n ,...,1,0ˆ
0...1

==
==

   

• Invariance condition (Lie’s theorem):

I) Generate classes of exact solutions from known ones.

III) Identify equations with isomorphic symmetry groups. 

They may be transformed into each other.

II)  Perform Symmetry Reduction:

b) reduce the order of an ODE.

a) reduce the number of variables in a PDE and obtain particular solutions,                  

satisfying certain boundary conditions: group invariant solutions.



•Classical Lie-point symmetries

•Higher-order symmetries

•Approximate symmetries

partial symmetries

contact symmetries

•Nonlocal symmetries (potential symmetries, theory of coverings, 

WE prolongation structures, pseudopotentials, ghost symmetries…)

λ symmetries

•Nonclassical symmetries

master symmetries

Many kinds of continuous symmetries are known:

etc.

generalized symmetries

conditional symmetries

group invariant sol.

part. invariant sol.

(A. Grundland, P. T. and P. Winternitz, J. Math. Phys. (2003))

Problems: how to extend the theory of Lie symmetries to Difference Equations?

how to discretize a differential equation in such a way that its symmetry

properties are preserved?



GeneralizedGeneralized pointpoint symmetriessymmetries of of LinearLinear

DifferenceDifference EquationsEquations

• D. Levi, P. T. and P. Winternitz,  JMP, 2004

Reduce to classical point symmetries in the continuum limit.

Differential equation

Operator equation

Family of linear difference

equations

π

( ) ( )u~,xE
~

u,xE: β    →

( ) ( )xPx n

n
→      βπ :

R

�

( ){ }
Nn

n
x ∈β

x∂ ∆

R

R

{ }
Nn

n
x ∈

[ ] 1, =∆ βx

R



Let E be a linear PDE of order n 2 or a linear ODE of order n 3 with constants or 

polynomial coefficients and      = R E be the corresponding operator equation. All

difference equations obtained by specializing and projecting possess a subalgebra of 

Lie point or higher-order symmetries isomorphic to the Lie algebra of symmetries of E.

Theorem 2

• Differential equation ( )∑
=

=∂
n

k

k

xk xfc
0

0

• Operator equation ( )∑
=

=
n

k

k

k xfQc
0

0β

• Family of difference equations
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qk xFc
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0 ( ) ( ) ( )( )xPfxfxF n=⋅= 1β

( ){ }
Nnn xP

∈
: basic sequence for

q∆

qQ ∆≡

Consequence: two classes of symmetries for linear P Es

Generalized point symmetries

Purely discrete symmetries

Isom. to cont. symm.

No continuum limit

R

≥

E
~

E
~

≥
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SuperintegrableSuperintegrable SystemsSystems inin Quantum Quantum MechanicsMechanics

• Classical mechanics

{ } 0, =FH 0=
∂

∂

t

F• Integral of motion:

Symplectic manifold ( )ω,M

• Quantum mechanics

• Integral of motion: [ ] 0, =XH 0=
∂

∂

t

X

Hilbert space: 

A system is said to be

nI =

nI >

Integrable

Superintegrable

• minimally superintegrable if 1+= nI

12 −= nI• maximally superintegrable if

( )µ,2 nRL



Stationary Schroedinger equation (in      )2E

ψψ EH = ( )yxVH ,
2

1 2 +∇−=

There are four superintegrable potentials admitting two integrals of motion which are 

second order polynomials in the momenta:

• M.B. Sheftel, P. T. and P. Winternitz, J. Math. Phys. (2001)

• A. Turbiner,  P. T. and P. Winternitz, J. Math. Phys (2001).

Superintegrability

Exact solvability

Generalized symmetries
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They are superseparable

Smorodinski-Winternitz potentials



GeneralGeneral structurestructure of the of the integralsintegrals of of motionmotion

with

The umbral correspondence immediately provides us

with discrete versions of these systems.

( ) ( ) ( )2
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132233113
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3 PPdLPPLcLPPLbaLX −+++++=
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ExactExact solvabilitysolvability in quantum in quantum mechanicsmechanics

SpectralSpectral propertiesproperties and and discretizationdiscretization

Def 8. A quantum mechanical system with Hamiltonian H is called exactly solvable if its

complete energy spectrum can be calculated algebraically.

......21 ⊂⊂⊂⊂ no SSSS

preserved by the Hamiltonian:

ii SHS ⊆

The bound state eigenfunctions are given by ( ) ( ) ( )sPxgx nn

rrr
=ψ

The Hamiltonian can be written as:

1−= ghgH
nnn PEhP =

ji

ijii JJbJah += generate aff(n,R)αJ

Its Hilbert space S of bound states consists of a flag of finite dimensional vector spaces



GeneralizedGeneralized harmonicharmonic oscillatoroscillator

Gauge factor:

After a change of variables, the first superintegrable Hamiltonian becomes

It preserves the flag of polynomials

The solutions of the eigenvalue problem are Laguerre polynomials

where

( )
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( )122 −= ppb( )111 −= ppa

( ) ( ) 2211432413 12122222 JpJpJJJJJJh +−+−++−−=

212121 1625241321 ,,,,, ssssss sJsJsJsJJJ ∂=∂=∂=∂=∂=∂=
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DiscretizationDiscretization preservingpreserving the Hthe H--W algebraW algebra

The commutation relations between integrals of motion as well as the spectrum

and the polynomial solutions are preseved. No convergence problems arise.

Let us consider a linear spectral problem

( ) ( )
2121 22411321

~
,

~
,

~
,

~
ssss sJsJJJ ∆=∆=∆=∆= ββ

( ) ( ) 2211432413

~
12

~
12

~
2

~
2

~~
2

~~
2 JpJpJJJJJJh +−+−++−−=

( ) ( ) ( )xxxL x λψψ =∂ ,

( ) ( ) ( )βλψβψβ xxxL =∆,

( ) ∑
∞

=

=
0k

k

k xaxψ ( ) [ ]q

k

k

k xax ∑
∞

=

=⋅
0

1βψ

All the discrete versions of the e.s.hamiltonians obtained preserving the Heisenberg-

Weyl algebra possess at least formally the same energy spectrum. All the polynomial

eigenfunctions can be algebraically computed.



ApplicationsApplications in in AlgebraicAlgebraic

NumberNumber TheoryTheory::

GeneralizedGeneralized RiemannRiemann zeta zeta 

functionsfunctions

and and 

New New BernoulliBernoulli –– typetype

PolynomialsPolynomials



FormalFormal groupsgroups and finite operator and finite operator theorytheory

�� ToTo eacheach delta operator delta operator itit correspondscorresponds a a realizationrealization of theof the

universaluniversal formalformal groupgroup lawlaw

�� GivenGiven a a symmetrysymmetry preservingpreserving discretizationdiscretization, , wewe can associate can associate 

it withit with a a formalformal groupgroup law, alaw, a RiemannRiemann--typetype zeta zeta functionfunction and and 

a class of a class of AppellAppell polynomialspolynomials

Symmetry preserving

dscretization

Formal groups Zeta Functions
Generalized Bernoulli

structures

Hyperfunctions



FormalFormal groupsgroups and and numbernumber theorytheory

�� WeWe willwill constructconstruct L L -- seriesseries attachedattached toto formalformal

groupgroup exponentialexponential lawslaws. . 

�� TheseThese seriesseries are are convergentconvergent and and generalizedgeneralized the the 

RiemannRiemann zeta zeta functionfunction

�� The The HurwitzHurwitz zeta zeta functionfunction willwill alsoalso bebe

generalizedgeneralized



TheoremTheorem 33.. Let G(t) be a formal group exponential of the form ( 2 ), such that 1/G(t) 

is a function over , rapidly decreasing at infinity.

i) The function

defined for admits an holomorphic continuation to the whole

and, for every we have

ii) Assume that G(t) is of the form ( 5 ). For the function L(G,s) has a representation

in terms of a Dirichlet series

where the coefficients are obtained from the formal expansion

iii) Assuming that , the series for L(G,s) is absolutely and uniformly convergent

for and



GeneralizedGeneralized HurwitzHurwitz functionsfunctions
Def. 9 Let G (t) be a formal group exponential of the type (4). The generalized Hurwitz

zeta function associated with G is the function L(G, s, a) defined for Re s > 1 by
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Finite Operator Calculus

Formal group laws

Algebraic Topology

Riemann-type

zeta functions

Bernoulli-type

polynomials

Delta operators

Symmetry preserving 

discretizations



BernoulliBernoulli polynomialspolynomials and and numbersnumbers
( ) k

k

kxt

t
t

k

xB
e

e

t
∑

∞

=

=
− 0 !1

x = 0 : Bernoulli numbers

• Theory of Riemann and Riemann-Hurwitz zeta functions

• Fermat’s Last Theorem and class field theory (Kummer)

• Measure theory in p-adic analysis (Mazur)

• Combinatorics of groups (V. I. Arnol’d)

• Ramanujan identities: QFT and Feynman diagrams

• GW invariants, soliton theory (Pandharipande, Veselov)

More than 1500 papers!

Interpolation theory (Boas and Buck)

Congruences and theory of algebraic equations
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CongruencesCongruences

( ) ( )∏∑
−−

∞

=

−==
p

s

n
s

p
n

s
1

1

1
1

ζ

If p is a prime number for which p-1 divides k, then
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Let m, n be positive even integers such that

II. Kummer

(mod p-1), 

p
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I. Clausen-von Staudt

where p is an odd prime. Then

Relation with the Riemann zeta function:
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Hurwitz zeta function:

Integral representation:
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UniversalUniversal BernoulliBernoulli polynomialspolynomials
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Def. 10. Let ,..., 21 cc be indeterminates over Q . Consider the formal group logarithm
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and the associated formal group exponential
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are defined by
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Remark.  When a = 1 and ( )i

ic 1−= then we obtain the classical Bernoulli polynomials

Def. 11. The universal Bernoulli numbers are defined by (Clarke)
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PropertiesProperties of UBPof UBP
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Universal Clausen – von Staudt congruence (1990)

Generalized Raabe’s multiplication theorem

Theorem 4.

Assume that



Conclusions and future perspectives

• Semigroup theory of linear difference equations and finite operator theory

• Finite operator approach for describing symmetries of nonlinear difference equations

H-W algebra

Symmetry-preserving discretization of linear PDEs

class of Riemann zeta functions, Hurwitz zeta 

functions, Appell polynomials of Bernoulli-type

MainMain resultresult: : correspondencecorrespondence betweenbetween delta delta operatorsoperators, , formalformal groupsgroups, , 

symmetrysymmetry preservingpreserving discretizationsdiscretizations and and algebraicalgebraic numbernumber theorytheory

• q-estensions of the previous theory


