

Cognome e Nome n. matr. Firma

1) Nel circuito di figura il transistor NMOS ha il parametro k_n pari a 25 $\mu A/V^2$ e la tensione di soglia pari a 750 mV. La resistenza R vale 150 $k\Omega$ e la tensione di alimentazione V_{DD} è di 3.3 V. Si stabilisca il rapporto W/L del transistor affinché si abbia una tensione V_{DS} di 250 mV.

max.10/30

2) Nel circuito di figura le alimentazioni $+V_{CC}$ e $-V_{EE}$ sono pari, rispettivamente, a +12 V e -12 V; le resistenza R_1 , R_2 , R_3 , R_4 e R_5 valgono, rispettivamente, $2 k\Omega$, 300Ω e $3.3 k\Omega$ $6 k\Omega$ $5.3 k\Omega$ condensatori C_1 , C_2 e C_3 valgono, rispettivamente, 200 μF , 27 μF e 100 μF . Il transistor, al silicio, ha un β pari a 100. stabilito il aver punto funzionamento del transistor si valuti il guadagno v_{out}/v_{in} a centro banda e la frequenza di taglio determinata dai tre condensatori, (si assuma che V_T sia pari a 26 mV).

max.20/30