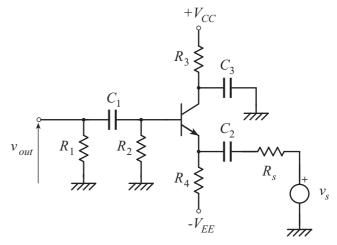

Cognome e Nome

n. matr.


Firma

1) Nel circuito di figura le resistenze R_1 e R_2 valgono, rispettivamente, $5 \, k\Omega$ e $10 \, k\Omega$ e le alimentazioni V_{CC} e $-V_{EE}$ valgono, rispettivamente, $10 \, V$ e $-10 \, V$. Si stabiliscano il potenziale V (rispetto alla massa) e la corrente I assumendo che la tensione di soglia dei diodi sia pari a $0.7 \, V$.

max.12/30

2) Nel circuito di figura le tensioni di alimentazione $+V_{CC}$ e $-V_{EE}$ valgono, rispettivamente, +12~V e -12~V; le resistenze R_1 , R_2 , R_3 , R_4 ed R_S valgono, rispettiva-mente, $150~k\Omega$, $150~k\Omega$, $1.8~k\Omega$, $12~k\Omega$ e $50~\Omega$. Il transistor, al silicio, ha un β pari a 150. Dopo aver stabilito il punto di funzionamento del transistor si valutino il guadagno v_{out}/v_S e l'impedenza di ingresso "vista" dal generatore v_S , (si assuma che V_T sia pari a 26~mV).

max.18/30